These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 34548085
1. Augmented feedback for manual wheelchair propulsion technique training in a virtual reality simulator. Yan H, Archambault PS. J Neuroeng Rehabil; 2021 Sep 21; 18(1):142. PubMed ID: 34548085 [Abstract] [Full Text] [Related]
2. Augmented feedback for powered wheelchair training in a virtual environment. Bigras C, Kairy D, Archambault PS. J Neuroeng Rehabil; 2019 Jan 18; 16(1):12. PubMed ID: 30658668 [Abstract] [Full Text] [Related]
3. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles. Rice I, Gagnon D, Gallagher J, Boninger M. J Spinal Cord Med; 2010 Jan 18; 33(1):33-42. PubMed ID: 20397442 [Abstract] [Full Text] [Related]
4. Effects of variable practice on the motor learning outcomes in manual wheelchair propulsion. Leving MT, Vegter RJ, de Groot S, van der Woude LH. J Neuroeng Rehabil; 2016 Nov 23; 13(1):100. PubMed ID: 27881124 [Abstract] [Full Text] [Related]
5. Assessment of Wheelchair Propulsion Performance in an Immersive Virtual Reality Simulator. Yang YS, Koontz AM, Hsiao YH, Pan CT, Chang JJ. Int J Environ Res Public Health; 2021 Jul 29; 18(15):. PubMed ID: 34360309 [Abstract] [Full Text] [Related]
6. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality. Salimi Z, Ferguson-Pell M. IEEE Trans Neural Syst Rehabil Eng; 2018 Jun 29; 26(6):1215-1222. PubMed ID: 29877846 [Abstract] [Full Text] [Related]
7. The influence of verbal training and visual feedback on manual wheelchair propulsion. DeGroot KK, Hollingsworth HH, Morgan KA, Morris CL, Gray DB. Disabil Rehabil Assist Technol; 2009 Mar 29; 4(2):86-94. PubMed ID: 19253097 [Abstract] [Full Text] [Related]
8. Usability of a virtual reality manual wheelchair simulator. Chaar F, Archambault PS. Disabil Rehabil Assist Technol; 2023 Nov 29; 18(8):1489-1499. PubMed ID: 35175178 [Abstract] [Full Text] [Related]
9. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study. Morgan KA, Tucker SM, Klaesner JW, Engsberg JR. J Spinal Cord Med; 2017 May 29; 40(3):304-315. PubMed ID: 26674751 [Abstract] [Full Text] [Related]
10. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics. Symonds A, Barbareschi G, Taylor S, Holloway C. Disabil Rehabil Assist Technol; 2018 Jan 29; 13(1):47-53. PubMed ID: 28102100 [Abstract] [Full Text] [Related]
11. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback. Rice IM, Pohlig RT, Gallagher JD, Boninger ML. Arch Phys Med Rehabil; 2013 Feb 29; 94(2):256-63. PubMed ID: 23022092 [Abstract] [Full Text] [Related]
12. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer JW, van der Woude LH, Veeger DH. J Neuroeng Rehabil; 2015 Mar 10; 12():26. PubMed ID: 25889389 [Abstract] [Full Text] [Related]
13. Promoting Physical Activity Through a Manual Wheelchair Propulsion Intervention in Persons With Multiple Sclerosis. Rice IM, Rice LA, Motl RW. Arch Phys Med Rehabil; 2015 Oct 10; 96(10):1850-8. PubMed ID: 26150167 [Abstract] [Full Text] [Related]
14. Effects of Motor Skill-Based Training on Wheelchair Propulsion Biomechanics in Older Adults: A Randomized Controlled Trial. MacGillivray MK, Eng JJ, Dean E, Sawatzky BJ. Arch Phys Med Rehabil; 2020 Jan 10; 101(1):1-10. PubMed ID: 31493382 [Abstract] [Full Text] [Related]
15. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion. Leving MT, Vegter RJ, Hartog J, Lamoth CJ, de Groot S, van der Woude LH. PLoS One; 2015 Jan 10; 10(5):e0127311. PubMed ID: 25992626 [Abstract] [Full Text] [Related]
16. Investigating the Reliability and Validity of Three Novel Virtual Reality Environments With Different Approaches to Simulate Wheelchair Maneuvers. Salimi Z, Ferguson-Pell M. IEEE Trans Neural Syst Rehabil Eng; 2019 Mar 10; 27(3):514-522. PubMed ID: 30716041 [Abstract] [Full Text] [Related]
17. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs. Briley SJ, Vegter RJK, Tolfrey VL, Mason BS. J Biomech; 2020 May 07; 104():109725. PubMed ID: 32173030 [Abstract] [Full Text] [Related]
18. Motor learning outcomes of handrim wheelchair propulsion during active spinal cord injury rehabilitation in comparison with experienced wheelchair users. Leving MT, de Groot S, Woldring FAB, Tepper M, Vegter RJK, van der Woude LHV. Disabil Rehabil; 2021 May 07; 43(10):1429-1442. PubMed ID: 31656102 [Abstract] [Full Text] [Related]
19. Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability. Eydieux N, Hybois S, Siegel A, Bascou J, Vaslin P, Pillet H, Fodé P, Sauret C. Disabil Rehabil Assist Technol; 2020 Apr 07; 15(3):305-313. PubMed ID: 30786787 [Abstract] [Full Text] [Related]
20. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. de Groot S, Veeger HE, Hollander AP, van der Woude LH. Med Eng Phys; 2005 Jan 07; 27(1):41-9. PubMed ID: 15604003 [Abstract] [Full Text] [Related] Page: [Next] [New Search]