These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A life cycle assessment of options for producing synthetic fuel via pyrolysis. Vienescu DN, Wang J, Le Gresley A, Nixon JD. Bioresour Technol; 2018 Feb; 249():626-634. PubMed ID: 29091847 [Abstract] [Full Text] [Related]
5. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass. Wong A, Zhang H, Kumar A. Water Res; 2016 Oct 01; 102():330-345. PubMed ID: 27379729 [Abstract] [Full Text] [Related]
6. Environmental evaluation of a distributed-centralized biomass pyrolysis system: A case study in Shandong, China. Yang X, Han D, Zhao Y, Li R, Wu Y. Sci Total Environ; 2020 May 10; 716():136915. PubMed ID: 32036128 [Abstract] [Full Text] [Related]
7. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment. Alam SN, Singh B, Guldhe A, Raghuvanshi S, Sangwan KS. Sci Total Environ; 2024 Apr 01; 919():170797. PubMed ID: 38342457 [Abstract] [Full Text] [Related]
9. Large-scale biohydrogen production from bio-oil. Sarkar S, Kumar A. Bioresour Technol; 2010 Oct 01; 101(19):7350-61. PubMed ID: 20452203 [Abstract] [Full Text] [Related]
10. Dynamic life-cycle carbon analysis for fast pyrolysis biofuel produced from pine residues: implications of carbon temporal effects. Lan K, Ou L, Park S, Kelley SS, Nepal P, Kwon H, Cai H, Yao Y. Biotechnol Biofuels; 2021 Sep 29; 14(1):191. PubMed ID: 34587989 [Abstract] [Full Text] [Related]
12. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood. Masum FH, Zaimes GG, Tan ECD, Li S, Dutta A, Ramasamy KK, Hawkins TR. Environ Sci Technol; 2023 Aug 29; 57(34):12701-12712. PubMed ID: 37590157 [Abstract] [Full Text] [Related]
13. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. Vuppaladadiyam AK, Vuppaladadiyam SSV, Sahoo A, Murugavelh S, Anthony E, Bhaskar T, Zheng Y, Zhao M, Duan H, Zhao Y, Antunes E, Sarmah AK, Leu SY. Sci Total Environ; 2023 Jan 20; 857(Pt 1):159155. PubMed ID: 36206897 [Abstract] [Full Text] [Related]
14. [Life Cycle Assessment and Key Parameter Comparison of Hydrogen Fuel Cell Vehicles Power Systems]. Chen YS, Lan LB, Hao Z, Fu P. Huan Jing Ke Xue; 2022 Aug 08; 43(8):4402-4412. PubMed ID: 35971737 [Abstract] [Full Text] [Related]
15. Global Life Cycle and Techno-Economic Assessment of Algal-Based Biofuels. Quiroz D, Greene JM, Limb BJ, Quinn JC. Environ Sci Technol; 2023 Aug 08; 57(31):11541-11551. PubMed ID: 37499260 [Abstract] [Full Text] [Related]
17. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Gallejones P, Pardo G, Aizpurua A, del Prado A. Sci Total Environ; 2015 Feb 01; 505():1191-201. PubMed ID: 25461117 [Abstract] [Full Text] [Related]
19. Environmental life cycle assessment of monosodium glutamate production in China: Based on the progress of cleaner production in recent ten years. Ding J, Hu X, Feng Z, Dong L. Sci Total Environ; 2022 Apr 20; 818():151706. PubMed ID: 34800459 [Abstract] [Full Text] [Related]
20. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment. Sundaram S, Kolb G, Hessel V, Wang Q. Ind Eng Chem Res; 2017 Mar 29; 56(12):3373-3387. PubMed ID: 28405056 [Abstract] [Full Text] [Related] Page: [Next] [New Search]