These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution. He Y, Makovicky PJ, Xu X, You H. Sci Rep; 2018 Apr 12; 8(1):5870. PubMed ID: 29651146 [Abstract] [Full Text] [Related]
3. A Fish-Eating Enantiornithine Bird from the Early Cretaceous of China Provides Evidence of Modern Avian Digestive Features. Wang M, Zhou Z, Sullivan C. Curr Biol; 2016 May 09; 26(9):1170-6. PubMed ID: 27133872 [Abstract] [Full Text] [Related]
4. Synthetic analysis of trophic diversity and evolution in Enantiornithes with new insights from Bohaiornithidae. Miller CV, Bright JA, Wang X, Zheng X, Pittman M. Elife; 2024 Apr 30; 12():. PubMed ID: 38687200 [Abstract] [Full Text] [Related]
6. Description of Tooth Ontogeny and Replacement Patterns in a Juvenile Tarbosaurus bataar (Dinosauria: Theropoda) Using CT-Scan Data. Hanai T, Tsuihiji T. Anat Rec (Hoboken); 2019 Jul 30; 302(7):1210-1225. PubMed ID: 30378771 [Abstract] [Full Text] [Related]
7. Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens. Rashid DJ, Surya K, Chiappe LM, Carroll N, Garrett KL, Varghese B, Bailleul A, O'Connor JK, Chapman SC, Horner JR. Sci Rep; 2018 Jun 13; 8(1):9014. PubMed ID: 29899503 [Abstract] [Full Text] [Related]
8. A Mesozoic bird from Gondwana preserving feathers. de Souza Carvalho I, Novas FE, Agnolín FL, Isasi MP, Freitas FI, Andrade JA. Nat Commun; 2015 Jun 02; 6():7141. PubMed ID: 26035285 [Abstract] [Full Text] [Related]
9. Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds. O'Connor JK, Zheng XT, Sullivan C, Chuong CM, Wang XL, Li A, Wang Y, Zhang XM, Zhou ZH. J Evol Biol; 2015 Aug 02; 28(8):1550-67. PubMed ID: 26079847 [Abstract] [Full Text] [Related]
10. Early development of rostrum saw-teeth in a fossil ray tests classical theories of the evolution of vertebrate dentitions. Smith MM, Riley A, Fraser GJ, Underwood C, Welten M, Kriwet J, Pfaff C, Johanson Z. Proc Biol Sci; 2015 Oct 07; 282(1816):20151628. PubMed ID: 26423843 [Abstract] [Full Text] [Related]
11. Tooth replacement in the early-diverging neornithischian Jeholosaurus shangyuanensis and implications for dental evolution and herbivorous adaptation in Ornithischia. Hu J, Xu X, Li F, Han F. BMC Ecol Evol; 2024 Apr 16; 24(1):46. PubMed ID: 38627692 [Abstract] [Full Text] [Related]
12. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. Zhou Z, Clarke J, Zhang F. J Anat; 2008 May 16; 212(5):565-77. PubMed ID: 18397240 [Abstract] [Full Text] [Related]
13. An Early Cretaceous enantiornithine bird with a pintail. Wang M, O'Connor JK, Zhao T, Pan Y, Zheng X, Wang X, Zhou Z. Curr Biol; 2021 Nov 08; 31(21):4845-4852.e2. PubMed ID: 34534442 [Abstract] [Full Text] [Related]
14. Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the "last" toothed birds. Dumont M, Tafforeau P, Bertin T, Bhullar BA, Field D, Schulp A, Strilisky B, Thivichon-Prince B, Viriot L, Louchart A. BMC Evol Biol; 2016 Sep 23; 16(1):178. PubMed ID: 27659919 [Abstract] [Full Text] [Related]
20. Direct evidence of frugivory in the Mesozoic bird Longipteryx contradicts morphological proxies for diet. O'Connor J, Clark A, Herrera F, Yang X, Wang X, Zheng X, Hu H, Zhou Z. Curr Biol; 2024 Oct 07; 34(19):4559-4566.e1. PubMed ID: 39260360 [Abstract] [Full Text] [Related] Page: [Next] [New Search]