These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 34601369
1. Capability of Far-Infrared for the selective identification of red and black pigments in paint layers. Giménez P, Linares A, Sessa C, Bagán H, García JF. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb 05; 266():120411. PubMed ID: 34601369 [Abstract] [Full Text] [Related]
2. ATR-FT-IR spectroscopy in the region of 550-230 cm(-1) for identification of inorganic pigments. Vahur S, Teearu A, Leito I. Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar 05; 75(3):1061-72. PubMed ID: 20061180 [Abstract] [Full Text] [Related]
3. ATR-FT-IR spectroscopy in the region of 500-230 cm(-1) for identification of inorganic red pigments. Vahur S, Knuutinen U, Leito I. Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug 15; 73(4):764-71. PubMed ID: 19409839 [Abstract] [Full Text] [Related]
6. Non-invasive detection of lead carboxylates in oil paintings by in situ infrared spectroscopy: How far can we go? Vagnini M, Anselmi C, Vivani R, Sgamellotti A. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov 15; 301():122962. PubMed ID: 37302196 [Abstract] [Full Text] [Related]
7. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Svarcová S, Cermáková Z, Hradilová J, Bezdička P, Hradil D. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov 11; 132():514-25. PubMed ID: 24892529 [Abstract] [Full Text] [Related]
9. Monitoring UV-accelerated alteration processes of paintings by means of hyperspectral micro-FTIR imaging and chemometrics. González-Cabrera M, Domínguez-Vidal A, Ayora-Cañada MJ. Spectrochim Acta A Mol Biomol Spectrosc; 2021 May 15; 253():119568. PubMed ID: 33618263 [Abstract] [Full Text] [Related]
10. Determination of the pigments present in a wallpaper of the middle nineteenth century: the combination of mid-diffuse reflectance and far infrared spectroscopies. Arrizabalaga I, Gómez-Laserna O, Aramendia J, Arana G, Madariaga JM. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr 24; 124():308-14. PubMed ID: 24503152 [Abstract] [Full Text] [Related]
11. ATR and transmission analysis of pigments by means of far infrared spectroscopy. Kendix EL, Prati S, Joseph E, Sciutto G, Mazzeo R. Anal Bioanal Chem; 2009 Jun 24; 394(4):1023-32. PubMed ID: 19266186 [Abstract] [Full Text] [Related]
12. Application of photoacoustic infrared spectroscopy in the forensic analysis of artists' inorganic pigments. von Aderkas EL, Barsan MM, Gilson DF, Butler IS. Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec 24; 77(5):954-9. PubMed ID: 20851668 [Abstract] [Full Text] [Related]
15. Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings. Frano KA, Mayhew HE, Svoboda SA, Wustholz KL. Analyst; 2014 Dec 21; 139(24):6450-5. PubMed ID: 25340987 [Abstract] [Full Text] [Related]
17. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies. Ropret P, Centeno SA, Bukovec P. Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb 21; 69(2):486-97. PubMed ID: 17590389 [Abstract] [Full Text] [Related]
18. Infrared spectra of North American automobile original finishes. XIV: Identification of Naphthol Red (C.I. Pigment Red 170) in finish layers and in color-coordinated primers. Suzuki EM. J Forensic Sci; 2023 Jan 21; 68(1):119-138. PubMed ID: 36345719 [Abstract] [Full Text] [Related]