These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 34601424

  • 1. Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot esculenta Crantz) as influenced by cultivar, plant age, and leaf position.
    Chaiareekitwat S, Latif S, Mahayothee B, Khuwijitjaru P, Nagle M, Amawan S, Müller J.
    Food Chem; 2022 Mar 15; 372():131173. PubMed ID: 34601424
    [Abstract] [Full Text] [Related]

  • 2. Nutritional characteristics of cassava (Manihot esculenta Crantz) leaf protein concentrates obtained by ultrafiltration and acidic thermocoagulation.
    Castellanos R, Altamirano SB, Moretti RH.
    Plant Foods Hum Nutr; 1994 Jun 15; 45(4):357-63. PubMed ID: 7971777
    [Abstract] [Full Text] [Related]

  • 3. Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation.
    Burns AE, Gleadow RM, Zacarias AM, Cuambe CE, Miller RE, Cavagnaro TR.
    J Agric Food Chem; 2012 May 16; 60(19):4946-56. PubMed ID: 22515684
    [Abstract] [Full Text] [Related]

  • 4. Amarelinha do Amapá: a carotenoid-rich cassava cultivar.
    Nassar NM, Fernandes PC, Melani RD, Pires OR.
    Genet Mol Res; 2009 Aug 25; 8(3):1051-5. PubMed ID: 19731202
    [Abstract] [Full Text] [Related]

  • 5. Isolation of detoxified cassava (Manihot esculenta L.) leaf protein by alkaline extraction-isoelectric precipitation: Optimization and its characterization.
    Patra A, Arun Prasath V.
    Food Chem; 2024 Mar 30; 437(Pt 1):137845. PubMed ID: 37922801
    [Abstract] [Full Text] [Related]

  • 6. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats.
    Soto-Blanco B, Górniak SL.
    Exp Toxicol Pathol; 2010 Jul 30; 62(4):361-6. PubMed ID: 19559583
    [Abstract] [Full Text] [Related]

  • 7. Current knowledge and future research perspectives on cassava (Manihot esculenta Crantz) chemical defenses: An agroecological view.
    Pinto-Zevallos DM, Pareja M, Ambrogi BG.
    Phytochemistry; 2016 Oct 30; 130():10-21. PubMed ID: 27316676
    [Abstract] [Full Text] [Related]

  • 8. Improving carotenoids and amino-acids in cassava.
    Nassar NM, Junior OP, Sousa MV, Ortiz R.
    Recent Pat Food Nutr Agric; 2009 Jan 30; 1(1):32-8. PubMed ID: 20653524
    [Abstract] [Full Text] [Related]

  • 9. Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives.
    An F, Chen T, Stéphanie DM, Li K, Li QX, Carvalho LJ, Tomlins K, Li J, Gu B, Chen S.
    PLoS One; 2016 Jan 30; 11(3):e0152154. PubMed ID: 27023871
    [Abstract] [Full Text] [Related]

  • 10. Detoxification of Cassava Leaves by Thermal, Sodium Bicarbonate, Enzymatic, and Ultrasonic Treatments.
    Latif S, Zimmermann S, Barati Z, Müller J.
    J Food Sci; 2019 Jul 30; 84(7):1986-1991. PubMed ID: 31192461
    [Abstract] [Full Text] [Related]

  • 11. Cassava cyanogens and free amino acids in raw and cooked leaves.
    Ngudi DD, Kuo YH, Lambein F.
    Food Chem Toxicol; 2003 Aug 30; 41(8):1193-7. PubMed ID: 12842188
    [Abstract] [Full Text] [Related]

  • 12. Linamarase expression in cassava cultivars with roots of low- and high-cyanide content.
    Santana MA, Vásquez V, Matehus J, Aldao RR.
    Plant Physiol; 2002 Aug 30; 129(4):1686-94. PubMed ID: 12177481
    [Abstract] [Full Text] [Related]

  • 13. Analysis of leaf morphology, secondary metabolites and proteins related to the resistance to Tetranychus cinnabarinus in cassava (Manihot esculenta Crantz).
    Yang Y, Luo X, Wei W, Fan Z, Huang T, Pan X.
    Sci Rep; 2020 Aug 26; 10(1):14197. PubMed ID: 32848172
    [Abstract] [Full Text] [Related]

  • 14. Bioguided Optimization of the Nutrition-Health, Antioxidant, and Immunomodulatory Properties of Manihot esculenta (Cassava) Flour Enriched with Cassava Leaves.
    Boukhers I, Domingo R, Septembre-Malaterre A, Antih J, Silvestre C, Petit T, Kodja H, Poucheret P.
    Nutrients; 2024 Sep 06; 16(17):. PubMed ID: 39275338
    [Abstract] [Full Text] [Related]

  • 15. Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation.
    Mitprasat M, Roytrakul S, Jiemsup S, Boonseng O, Yokthongwattana K.
    Planta; 2011 Jun 06; 233(6):1209-21. PubMed ID: 21327816
    [Abstract] [Full Text] [Related]

  • 16. Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein.
    Bradbury JH, Denton IC.
    Food Chem; 2014 Sep 01; 158():417-20. PubMed ID: 24731363
    [Abstract] [Full Text] [Related]

  • 17. Violet diode laser-induced chlorophyll fluorescence: a tool for assessing mosaic disease severity in cassava (Manihot esculenta Crantz) cultivars.
    Anderson B, Eghan MJ, Asare-Bediako E, Buah-Bassuah PK.
    Environ Technol; 2012 Sep 01; 33(1-3):367-72. PubMed ID: 22519123
    [Abstract] [Full Text] [Related]

  • 18. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov 01; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 19. Cyanide detoxification in cassava for food and feed uses.
    Padmaja G.
    Crit Rev Food Sci Nutr; 1995 Jul 01; 35(4):299-339. PubMed ID: 7576161
    [Abstract] [Full Text] [Related]

  • 20. Single-cell RNA-sequencing profiles reveal the developmental landscape of the Manihot esculenta Crantz leaves.
    Zang Y, Pei Y, Cong X, Ran F, Liu L, Wang C, Wang D, Min Y.
    Plant Physiol; 2023 Dec 30; 194(1):456-474. PubMed ID: 37706525
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.