These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 34603913

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Novel efficient enzymatic synthesis of the key-reaction intermediate of PET depolymerization, mono(2-hydroxyethyl terephthalate) - MHET.
    Eugenio EQ, Campisano ISP, Dias AG, Castro AM, Coelho MAZ, Langone MAP.
    J Biotechnol; 2022 Nov 10; 358():102-110. PubMed ID: 36063976
    [Abstract] [Full Text] [Related]

  • 3. Enzymatic post-consumer poly(ethylene terephthalate) (PET) depolymerization using commercial enzymes.
    Brackmann R, de Oliveira Veloso C, de Castro AM, Langone MAP.
    3 Biotech; 2023 May 10; 13(5):135. PubMed ID: 37124991
    [Abstract] [Full Text] [Related]

  • 4. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst.
    Shingwekar D, Laster H, Kemp H, Mellies JL.
    Bioengineering (Basel); 2023 Oct 26; 10(11):. PubMed ID: 38002377
    [Abstract] [Full Text] [Related]

  • 5. Post-Consumer Poly(ethylene terephthalate) (PET) Depolymerization by Yarrowia lipolytica: A Comparison between Hydrolysis Using Cell-Free Enzymatic Extracts and Microbial Submerged Cultivation.
    Sales JCS, de Castro AM, Ribeiro BD, Coelho MAZ.
    Molecules; 2022 Nov 03; 27(21):. PubMed ID: 36364329
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Improved production of biocatalysts by Yarrowia lipolytica using natural sources of the biopolyesters cutin and suberin, and their application in hydrolysis of poly (ethylene terephthalate) (PET).
    Sales JCS, de Castro AM, Ribeiro BD, Coelho MAZ.
    Bioprocess Biosyst Eng; 2021 Nov 03; 44(11):2277-2287. PubMed ID: 34165618
    [Abstract] [Full Text] [Related]

  • 10. Synergistic biodegradation of poly(ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase.
    Yan ZF, Wang L, Xia W, Liu ZZ, Gu LT, Wu J.
    Appl Microbiol Biotechnol; 2021 Jun 03; 105(11):4551-4560. PubMed ID: 34037842
    [Abstract] [Full Text] [Related]

  • 11. Biodegradation of Poly(ethylene terephthalate) by Bacillus safensis YX8.
    Zeng C, Ding F, Zhou J, Dong W, Cui Z, Yan X.
    Int J Mol Sci; 2023 Nov 17; 24(22):. PubMed ID: 38003625
    [Abstract] [Full Text] [Related]

  • 12. Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic.
    Roberts C, Edwards S, Vague M, León-Zayas R, Scheffer H, Chan G, Swartz NA, Mellies JL.
    mSphere; 2020 Dec 23; 5(6):. PubMed ID: 33361127
    [Abstract] [Full Text] [Related]

  • 13. Chemo-Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials.
    Kim HT, Hee Ryu M, Jung YJ, Lim S, Song HM, Park J, Hwang SY, Lee HS, Yeon YJ, Sung BH, Bornscheuer UT, Park SJ, Joo JC, Oh DX.
    ChemSusChem; 2021 Oct 05; 14(19):4251-4259. PubMed ID: 34339110
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Engineering dual-functional and thermophilic BMHETase for efficient degradation of polyethylene terephthalate.
    Miao R, Xu G, Ding Y, Ding Z, Woodard J, Tu T, Luo H, Wu N, Yao B, Guan F, Tian J.
    Bioresour Technol; 2024 Dec 05; 414():131556. PubMed ID: 39357610
    [Abstract] [Full Text] [Related]

  • 17. Synergism Between Multi-Pseudomonas and Cutinase for Biodegradation of Crude Oil-Based Derivatives.
    Yan ZF, Xu KW, Wu J.
    Curr Microbiol; 2022 Dec 06; 80(1):30. PubMed ID: 36474116
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Development of a Targeted Gene Disruption System in the Poly(Ethylene Terephthalate)-Degrading Bacterium Ideonella sakaiensis and Its Applications to PETase and MHETase Genes.
    Hachisuka SI, Nishii T, Yoshida S.
    Appl Environ Microbiol; 2021 Aug 26; 87(18):e0002021. PubMed ID: 34260304
    [Abstract] [Full Text] [Related]

  • 20. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET.
    Yu Y, Shen G, Xu TJ, Wen R, Qiao YC, Cheng RC, Huo Y.
    RSC Adv; 2023 Dec 08; 13(51):36337-36345. PubMed ID: 38093730
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.