These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 34604

  • 1. Pseudosubstrates of the sarcoplasmic Ca2+-ATPase as tools to study the coupling between substrate hydrolysis and Ca2+ transport.
    Rossi B, de Assis Leone F, Gache C, Lazdunski M.
    J Biol Chem; 1979 Apr 10; 254(7):2302-7. PubMed ID: 34604
    [No Abstract] [Full Text] [Related]

  • 2. The pH dependence of the Ca2+, Mg2+-ATPase of sarcoplasmic reticulum: evidence that the Ca2+ translocator bears a doubly negative charge.
    Haynes DH, Mandveno A.
    J Membr Biol; 1983 Apr 10; 74(1):25-40. PubMed ID: 6134838
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Energy coupling in sarcoplasmic reticulum Ca2+ transport: an overview.
    Hasselbach W, Waas W.
    Ann N Y Acad Sci; 1982 Apr 10; 402():459-69. PubMed ID: 6220649
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. [Ca2+-dependent ATPases of the sarcoplasmic reticulum of skeletal and cardiac muscles and their ion-transporting fragments].
    Levitskiĭ DO, Grishin EV, Biriukova TV, Lebedev AV, Nikolaeva LN.
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1981 Apr 10; 4(2):7-15. PubMed ID: 6459108
    [Abstract] [Full Text] [Related]

  • 7. Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum: potential role of the 53-kilodalton glycoprotein.
    Leonards KS, Kutchai H.
    Biochemistry; 1985 Aug 27; 24(18):4876-84. PubMed ID: 2934086
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
    Shigekawa M, Finegan JA, Katz AM.
    J Biol Chem; 1976 Nov 25; 251(22):6894-900. PubMed ID: 11210
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. On the mechanism of ATP-driven Ca2+ transport by the calcium ATPase of sarcoplasmic reticulum.
    Jencks WP.
    Ann N Y Acad Sci; 1992 Nov 30; 671():49-56; discussion 56-7. PubMed ID: 1288349
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Time-resolved X-ray diffraction studies on the mechanism of active Ca2+ transport by the sarcoplasmic reticulum Ca2+ ATPase.
    Blasie JK, Asturias FJ, DeLong LJ.
    Ann N Y Acad Sci; 1992 Nov 30; 671():11-8. PubMed ID: 1288319
    [No Abstract] [Full Text] [Related]

  • 17. Coupling of catalytic and channel function in the Ca2+ transport ATPase.
    Inesi G, Kirtley ME.
    J Membr Biol; 1990 Jun 30; 116(1):1-8. PubMed ID: 2165173
    [No Abstract] [Full Text] [Related]

  • 18. Functional evidence of a transmembrane channel within the Ca2+ transport ATPase of sarcoplasmic reticulum.
    de Meis L, Inesi G.
    FEBS Lett; 1992 Mar 24; 299(1):33-5. PubMed ID: 1312032
    [Abstract] [Full Text] [Related]

  • 19. Effect of solubilization on adenosine 5'-triphosphate induced calcium release from purified sarcoplasmic reticulum calcium adenosinetriphosphatase.
    Dean WL, Gray RD.
    Biochemistry; 1983 Jan 18; 22(2):515-9. PubMed ID: 6218822
    [Abstract] [Full Text] [Related]

  • 20. The effect of phenothiazines on Ca2+ fluxes in skeletal muscle sarcoplasmic reticulum.
    Volpe P, Costello B, Chu A, Fleischer S.
    Arch Biochem Biophys; 1984 Aug 15; 233(1):174-9. PubMed ID: 6147120
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.