These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
84 related items for PubMed ID: 3460422
1. Presumptive MAPs and "cold-stable" microtubules from Antarctic marine poikilotherms. Williams RC, Detrich HW. Ann N Y Acad Sci; 1986; 466():436-9. PubMed ID: 3460422 [No Abstract] [Full Text] [Related]
2. Microtubule assembly in cold-adapted organisms: functional properties and structural adaptations of tubulins from antarctic fishes. Detrich HW. Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):501-13. PubMed ID: 9406432 [Abstract] [Full Text] [Related]
4. Formation of microtubules at low temperature by tubulin from antarctic fish. Williams RC, Correia JJ, DeVries AL. Biochemistry; 1985 May 21; 24(11):2790-8. PubMed ID: 4027227 [Abstract] [Full Text] [Related]
5. Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Detrich HW, Johnson KA, Marchese-Ragona SP. Biochemistry; 1989 Dec 26; 28(26):10085-93. PubMed ID: 2620064 [Abstract] [Full Text] [Related]
6. Assembly of Atlantic cod (Gadus morhua) brain microtubules at different temperatures: dependency of microtubule-associated proteins is relative to temperature. Wallin M, Billger M, Strömberg T, Strömberg E. Arch Biochem Biophys; 1993 Nov 15; 307(1):200-5. PubMed ID: 8239657 [Abstract] [Full Text] [Related]
7. Microtubule-associated proteins-dependent colchicine stability of acetylated cold-labile brain microtubules from the Atlantic cod, Gadus morhua. Billger M, Strömberg E, Wallin M. J Cell Biol; 1991 Apr 15; 113(2):331-8. PubMed ID: 2010465 [Abstract] [Full Text] [Related]
8. Calmodulin and cold-labile microtubules. Lee YC, Wolff J. Methods Enzymol; 1987 Apr 15; 139():834-46. PubMed ID: 3587049 [No Abstract] [Full Text] [Related]
9. Comparative effects of cryosolvents on tubulin association, thermal stability, and binding of microtubule-associated proteins. Pajot-Augy E. Cryobiology; 1993 Jun 15; 30(3):286-98. PubMed ID: 8370315 [Abstract] [Full Text] [Related]
13. Differences in the effect of Ca2+ on isolated microtubules from cod and cow brain. Strömberg E, Wallin M. Cell Motil Cytoskeleton; 1994 Jun 15; 28(1):59-68. PubMed ID: 8044850 [Abstract] [Full Text] [Related]
17. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Hamel E, Lin CM. Biochemistry; 1984 Aug 28; 23(18):4173-84. PubMed ID: 6487596 [Abstract] [Full Text] [Related]
19. Several metabolic factors governing the dynamics of microtubule assembly and disassembly. Lee SH, Flynn G, Yamauchi PS, Purich DL. Ann N Y Acad Sci; 1986 Aug 28; 466():519-28. PubMed ID: 2942085 [No Abstract] [Full Text] [Related]
20. Sliding of STOP proteins on microtubules. Pabion M, Job D, Margolis RL. Biochemistry; 1984 Dec 18; 23(26):6642-8. PubMed ID: 6529574 [Abstract] [Full Text] [Related] Page: [Next] [New Search]