These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Methacrylated pullulan/polyethylene (glycol) diacrylate composite hydrogel for cartilage tissue engineering. Qin X, He R, Chen H, Fu D, Peng Y, Meng S, Chen C, Yang L. J Biomater Sci Polym Ed; 2021 Jun; 32(8):1057-1071. PubMed ID: 33685369 [Abstract] [Full Text] [Related]
5. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N, Gogoi M, Tewari RP. Curr Med Imaging; 2021 Jun; 17(7):832-842. PubMed ID: 33334294 [Abstract] [Full Text] [Related]
6. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z, Xie S, Kang Y, Shan X, Li Q, Cai Z. Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [Abstract] [Full Text] [Related]
7. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects. Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H. Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553 [Abstract] [Full Text] [Related]
8. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Choe R, Devoy E, Kuzemchak B, Sherry M, Jabari E, Packer JD, Fisher JP. Biofabrication; 2022 Feb 23; 14(2):. PubMed ID: 35120345 [Abstract] [Full Text] [Related]
11. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. ACS Appl Mater Interfaces; 2020 Jan 29; 12(4):4343-4357. PubMed ID: 31909967 [Abstract] [Full Text] [Related]
13. Implementation of Photosensitive, Injectable, Interpenetrating, and Kartogenin-Modified GELMA/PEDGA Biomimetic Scaffolds to Restore Cartilage Integrity in a Full-Thickness Osteochondral Defect Model. Yu H, Feng M, Mao G, Li Q, Zhang Z, Bian W, Qiu Y. ACS Biomater Sci Eng; 2022 Oct 10; 8(10):4474-4485. PubMed ID: 36074133 [Abstract] [Full Text] [Related]
14. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Schwarz S, Kuth S, Distler T, Gögele C, Stölzel K, Detsch R, Boccaccini AR, Schulze-Tanzil G. Mater Sci Eng C Mater Biol Appl; 2020 Nov 10; 116():111189. PubMed ID: 32806255 [Abstract] [Full Text] [Related]
16. Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing. Sheng L, Li M, Zheng S, Qi J. J Biomater Appl; 2022 Feb 22; 36(7):1173-1187. PubMed ID: 34738507 [Abstract] [Full Text] [Related]
17. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Chu Y, Huang L, Hao W, Zhao T, Zhao H, Yang W, Xie X, Qian L, Chen Y, Dai J. Biomed Mater; 2021 Sep 28; 16(6):. PubMed ID: 34507313 [Abstract] [Full Text] [Related]
18. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration. Rajabi M, Cabral JD, Saunderson S, Ali MA. J Biomed Mater Res A; 2023 Sep 28; 111(9):1468-1481. PubMed ID: 37066870 [Abstract] [Full Text] [Related]