These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 34610522
1. Assimilate highway to sink organs - Physiological consequences of SP6A overexpression in transgenic potato (Solanum tuberosum L.). Lehretz GG, Sonnewald S, Sonnewald U. J Plant Physiol; 2021 Nov; 266():153530. PubMed ID: 34610522 [Abstract] [Full Text] [Related]
2. Post-transcriptional Regulation of FLOWERING LOCUS T Modulates Heat-Dependent Source-Sink Development in Potato. Lehretz GG, Sonnewald S, Hornyik C, Corral JM, Sonnewald U. Curr Biol; 2019 May 20; 29(10):1614-1624.e3. PubMed ID: 31056391 [Abstract] [Full Text] [Related]
3. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Hastilestari BR, Lorenz J, Reid S, Hofmann J, Pscheidt D, Sonnewald U, Sonnewald S. Plant Cell Environ; 2018 Nov 20; 41(11):2600-2616. PubMed ID: 29869794 [Abstract] [Full Text] [Related]
4. Yield reduction caused by elevated temperatures and high nitrogen fertilization is mitigated by SP6A overexpression in potato (Solanum tuberosum L.). Koch L, Lehretz GG, Sonnewald U, Sonnewald S. Plant J; 2024 Mar 20; 117(6):1702-1715. PubMed ID: 38334712 [Abstract] [Full Text] [Related]
5. Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, Visser RGF, Sonnewald U, Bachem CWB. Curr Biol; 2019 Apr 01; 29(7):1178-1186.e6. PubMed ID: 30905604 [Abstract] [Full Text] [Related]
6. Long-distance control of potato storage organ formation by SELF PRUNING 3D and FLOWERING LOCUS T-like 1. Jing S, Jiang P, Sun X, Yu L, Wang E, Qin J, Zhang F, Prat S, Song B. Plant Commun; 2023 May 08; 4(3):100547. PubMed ID: 36635965 [Abstract] [Full Text] [Related]
7. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.). Wang JW, Wang HQ, Xiang WW, Chai TY. Genet Mol Res; 2014 May 09; 13(2):3615-26. PubMed ID: 24854441 [Abstract] [Full Text] [Related]
8. A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT5Z and OsSUT2M. Sun A, Dai Y, Zhang X, Li C, Meng K, Xu H, Wei X, Xiao G, Ouwerkerk PB, Wang M, Zhu Z. J Integr Plant Biol; 2011 Jul 09; 53(7):586-95. PubMed ID: 21676173 [Abstract] [Full Text] [Related]
9. The tuberization signal StSP6A represses flower bud development in potato. Plantenga FDM, Bergonzi S, Abelenda JA, Bachem CWB, Visser RGF, Heuvelink E, Marcelis LFM. J Exp Bot; 2019 Feb 05; 70(3):937-948. PubMed ID: 30481308 [Abstract] [Full Text] [Related]
10. Expression Level of Mature miR172 in Wild Type and StSUT4-Silenced Plants of Solanum tuberosum Is Sucrose-Dependent. Garg V, Hackel A, Kühn C. Int J Mol Sci; 2021 Feb 01; 22(3):. PubMed ID: 33535646 [Abstract] [Full Text] [Related]
11. Expression of a yeast-derived invertase in companion cells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrose transport. Zuther E, Kwart M, Willmitzer L, Heyer AG. Planta; 2004 Mar 01; 218(5):759-66. PubMed ID: 14625772 [Abstract] [Full Text] [Related]
12. Future-Proofing Potato for Drought and Heat Tolerance by Overexpression of Hexokinase and SP6A. Lehretz GG, Sonnewald S, Lugassi N, Granot D, Sonnewald U. Front Plant Sci; 2020 Mar 01; 11():614534. PubMed ID: 33510758 [Abstract] [Full Text] [Related]
13. Undirected Sucrose Efflux Mitigation by the FT-Like SP6A Preferentially Enhances Tuber Resource Partitioning. van den Herik B, Ten Tusscher K. Front Plant Sci; 2022 Mar 01; 13():817909. PubMed ID: 35615135 [Abstract] [Full Text] [Related]
14. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). Hajirezaei MR, Börnke F, Peisker M, Takahata Y, Lerchl J, Kirakosyan A, Sonnewald U. J Exp Bot; 2003 Jan 01; 54(382):477-88. PubMed ID: 12508058 [Abstract] [Full Text] [Related]
15. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato. Ghate TH, Sharma P, Kondhare KR, Hannapel DJ, Banerjee AK. Plant Mol Biol; 2017 Apr 01; 93(6):563-578. PubMed ID: 28084609 [Abstract] [Full Text] [Related]
16. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. González-Schain ND, Díaz-Mendoza M, Zurczak M, Suárez-López P. Plant J; 2012 May 01; 70(4):678-90. PubMed ID: 22260207 [Abstract] [Full Text] [Related]
17. Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development. Zhang Y, Sun F, Fettke J, Schöttler MA, Ramsden L, Fernie AR, Lim BL. FEBS Lett; 2014 Oct 16; 588(20):3726-31. PubMed ID: 25173632 [Abstract] [Full Text] [Related]
18. Spatial control of potato tuberization by the TCP transcription factor BRANCHED1b. Nicolas M, Torres-Pérez R, Wahl V, Cruz-Oró E, Rodríguez-Buey ML, Zamarreño AM, Martín-Jouve B, García-Mina JM, Oliveros JC, Prat S, Cubas P. Nat Plants; 2022 Mar 16; 8(3):281-294. PubMed ID: 35318445 [Abstract] [Full Text] [Related]
19. The plasma membrane H+-ATPase gene family in Solanum tuberosum L. Role of PHA1 in tuberization. Stritzler M, Muñiz García MN, Schlesinger M, Cortelezzi JI, Capiati DA. J Exp Bot; 2017 Oct 13; 68(17):4821-4837. PubMed ID: 28992210 [Abstract] [Full Text] [Related]
20. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA. New Phytol; 2013 Jun 13; 198(4):1108-1120. PubMed ID: 23496288 [Abstract] [Full Text] [Related] Page: [Next] [New Search]