These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 34617094

  • 1. The disparate effect of strain on thermal conductivity of 2-D materials.
    Dheeraj KVS, Sathian SP.
    Phys Chem Chem Phys; 2021 Oct 20; 23(40):23096-23105. PubMed ID: 34617094
    [Abstract] [Full Text] [Related]

  • 2. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties.
    K V S D, Kannam SK, Sathian SP.
    Nanotechnology; 2020 Aug 21; 31(34):345703. PubMed ID: 32369790
    [Abstract] [Full Text] [Related]

  • 3. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.
    Liu H, Qin G, Lin Y, Hu M.
    Nano Lett; 2016 Jun 08; 16(6):3831-42. PubMed ID: 27228130
    [Abstract] [Full Text] [Related]

  • 4. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX, Liu JT, Guo SD, Li HC.
    Phys Chem Chem Phys; 2017 Jun 07; 19(22):14520-14526. PubMed ID: 28537286
    [Abstract] [Full Text] [Related]

  • 5. Anomalous strain effect on the thermal conductivity of low-buckled two-dimensional silicene.
    Ding B, Li X, Zhou W, Zhang G, Gao H.
    Natl Sci Rev; 2021 Sep 07; 8(9):nwaa220. PubMed ID: 34691724
    [Abstract] [Full Text] [Related]

  • 6. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z, Yuan K, Zhang X, Qin G, Gong X, Tang D.
    Phys Chem Chem Phys; 2019 Jul 17; 21(28):15647-15655. PubMed ID: 31268444
    [Abstract] [Full Text] [Related]

  • 7. Thickness-Dependent Cross-Plane Thermal Conductivity Measurements of Exfoliated Hexagonal Boron Nitride.
    Jaffe GR, Smith KJ, Watanabe K, Taniguchi T, Lagally MG, Eriksson MA, Brar VW.
    ACS Appl Mater Interfaces; 2023 Mar 08; 15(9):12545-12550. PubMed ID: 36848224
    [Abstract] [Full Text] [Related]

  • 8. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y, Li D, Yin Y, Li S, Zhou H, Zhang G.
    RSC Adv; 2020 Jun 29; 10(42):25305-25310. PubMed ID: 35517492
    [Abstract] [Full Text] [Related]

  • 9. Low Lattice Thermal Conductivity of a Two-Dimensional Phosphorene Oxide.
    Lee S, Kang SH, Kwon YK.
    Sci Rep; 2019 Mar 26; 9(1):5149. PubMed ID: 30914726
    [Abstract] [Full Text] [Related]

  • 10. Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride.
    Li S, Chen Y.
    Sci Rep; 2017 Mar 06; 7():43956. PubMed ID: 28262786
    [Abstract] [Full Text] [Related]

  • 11. Drastic effects of vacancies on phonon lifetime and thermal conductivity in graphene.
    Bouzerar G, Thébaud S, Pecorario S, Adessi C.
    J Phys Condens Matter; 2020 Jul 08; 32(29):295702. PubMed ID: 32319427
    [Abstract] [Full Text] [Related]

  • 12. Why thermal conductivity of CaO is lower than that of CaS: a study from the perspective of phonon splitting of optical mode.
    Yang Z, Yuan K, Meng J, Zhang X, Tang D, Hu M.
    Nanotechnology; 2021 Jan 08; 32(2):025709. PubMed ID: 33055376
    [Abstract] [Full Text] [Related]

  • 13. Low lattice thermal conductivity of stanene.
    Peng B, Zhang H, Shao H, Xu Y, Zhang X, Zhu H.
    Sci Rep; 2016 Feb 03; 6():20225. PubMed ID: 26838731
    [Abstract] [Full Text] [Related]

  • 14. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer.
    Chen X, Wang G, Li B, Wang N.
    Langmuir; 2024 Feb 13; 40(6):3095-3104. PubMed ID: 38299976
    [Abstract] [Full Text] [Related]

  • 15. Effect of strong phonon-phonon coupling on the temperature dependent structural stability and frequency shift of 2D hexagonal boron nitride.
    Anees P, Valsakumar MC, Panigrahi BK.
    Phys Chem Chem Phys; 2016 Jan 28; 18(4):2672-81. PubMed ID: 26705543
    [Abstract] [Full Text] [Related]

  • 16. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2.
    Shafique A, Shin YH.
    Phys Chem Chem Phys; 2017 Dec 06; 19(47):32072-32078. PubMed ID: 29181465
    [Abstract] [Full Text] [Related]

  • 17. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS, Wu H, Hu Y.
    Nano Lett; 2017 Dec 13; 17(12):7507-7514. PubMed ID: 29115845
    [Abstract] [Full Text] [Related]

  • 18. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD, Dong J, Liu JT.
    Phys Chem Chem Phys; 2018 Aug 29; 20(34):22038-22046. PubMed ID: 30112534
    [Abstract] [Full Text] [Related]

  • 19. In-plane and cross-plane thermal conductivities of molybdenum disulfide.
    Ding Z, Jiang JW, Pei QX, Zhang YW.
    Nanotechnology; 2015 Feb 13; 26(6):065703. PubMed ID: 25597653
    [Abstract] [Full Text] [Related]

  • 20. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z, Yuan K, Meng J, Hu M.
    Nanoscale; 2020 Oct 07; 12(37):19178-19190. PubMed ID: 32926048
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.