These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


293 related items for PubMed ID: 34618920

  • 1. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants.
    Leahy L, Scheffers BR, Williams SE, Andersen AN.
    Ecology; 2022 Jan; 103(1):e03549. PubMed ID: 34618920
    [Abstract] [Full Text] [Related]

  • 2. Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: The importance of the elevation-time axis.
    Gutiérrez-Pesquera LM, Tejedo M, Camacho A, Enriquez-Urzelai U, Katzenberger M, Choda M, Pintanel P, Nicieza AG.
    Ecol Evol; 2022 Oct; 12(10):e9349. PubMed ID: 36225839
    [Abstract] [Full Text] [Related]

  • 3. Is thermal limitation the primary driver of elevational distributions? Not for montane rainforest ants in the Australian Wet Tropics.
    Nowrouzi S, Andersen AN, Bishop TR, Robson SKA.
    Oecologia; 2018 Oct; 188(2):333-342. PubMed ID: 29736865
    [Abstract] [Full Text] [Related]

  • 4. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.
    Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A.
    Glob Chang Biol; 2015 Mar; 21(3):1092-102. PubMed ID: 25242246
    [Abstract] [Full Text] [Related]

  • 5. Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient.
    Law SJ, Bishop TR, Eggleton P, Griffiths H, Ashton L, Parr C.
    J Anim Ecol; 2020 Feb; 89(2):347-359. PubMed ID: 31637702
    [Abstract] [Full Text] [Related]

  • 6. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM, Mudd AE, Erickson SC, O'Donnell S.
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [Abstract] [Full Text] [Related]

  • 7. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling.
    von May R, Catenazzi A, Santa-Cruz R, Gutierrez AS, Moritz C, Rabosky DL.
    PLoS One; 2019 Sep; 14(8):e0219759. PubMed ID: 31369565
    [Abstract] [Full Text] [Related]

  • 8. Insects in temperate urban parks face stronger selection pressure from the cold than the heat.
    Bujan J, Bertelsmeier C, Ješovnik A.
    Ecol Evol; 2024 Aug; 14(8):e11335. PubMed ID: 39165538
    [Abstract] [Full Text] [Related]

  • 9. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient.
    Pintanel P, Tejedo M, Salinas-Ivanenko S, Jervis P, Merino-Viteri A.
    J Anim Ecol; 2021 Aug; 90(8):1985-1995. PubMed ID: 33942306
    [Abstract] [Full Text] [Related]

  • 10. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants.
    Youngsteadt E, Prado SG, Keleher KJ, Kirchner M.
    J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830
    [Abstract] [Full Text] [Related]

  • 11. Adhesive performance of tropical arboreal ants varies with substrate temperature.
    Stark AY, Arstingstall K, Yanoviak SP.
    J Exp Biol; 2018 Jan 09; 221(Pt 1):. PubMed ID: 29146768
    [Abstract] [Full Text] [Related]

  • 12. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.
    Kaspari M, Clay NA, Lucas J, Revzen S, Kay A, Yanoviak SP.
    Ecology; 2016 Apr 09; 97(4):1038-47. PubMed ID: 27220219
    [Abstract] [Full Text] [Related]

  • 13. Thermal limits along tropical elevational gradients: Poison frog tadpoles show plasticity but maintain divergence across elevation.
    Páez-Vacas MI, Funk WC.
    J Therm Biol; 2024 Feb 09; 120():103815. PubMed ID: 38402728
    [Abstract] [Full Text] [Related]

  • 14. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats.
    Dongmo MAK, Hanna R, Smith TB, Fiaboe KKM, Fomena A, Bonebrake TC.
    Biol Open; 2021 Apr 15; 10(4):. PubMed ID: 34416009
    [Abstract] [Full Text] [Related]

  • 15. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity.
    Pincebourde S, Suppo C.
    Integr Comp Biol; 2016 Jul 15; 56(1):85-97. PubMed ID: 27371561
    [Abstract] [Full Text] [Related]

  • 16. Complex body size differences in thermal tolerance among army ant workers (Eciton burchellii parvispinum).
    Baudier K, O'Donnell S.
    J Therm Biol; 2018 Dec 15; 78():277-280. PubMed ID: 30509648
    [Abstract] [Full Text] [Related]

  • 17. Increasing arboreality with altitude: a novel biogeographic dimension.
    Scheffers BR, Phillips BL, Laurance WF, Sodhi NS, Diesmos A, Williams SE.
    Proc Biol Sci; 2013 Nov 07; 280(1770):20131581. PubMed ID: 24026817
    [Abstract] [Full Text] [Related]

  • 18. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees.
    Gonzalez VH, Oyen K, Aguilar ML, Herrera A, Martin RD, Ospina R.
    Ecol Evol; 2022 Dec 07; 12(12):e9560. PubMed ID: 36479027
    [Abstract] [Full Text] [Related]

  • 19. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.
    Allen JL, Chown SL, Janion-Scheepers C, Clusella-Trullas S.
    Conserv Physiol; 2016 Dec 07; 4(1):cow053. PubMed ID: 27933165
    [Abstract] [Full Text] [Related]

  • 20. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B, Murray BR, Webb JK.
    J Exp Biol; 2017 Jun 15; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.