These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 34624420
1. Intraoral scanner featuring transillumination for proximal caries detection. An in vitro validation study on permanent posterior teeth. Michou S, Vannahme C, Bakhshandeh A, Ekstrand KR, Benetti AR. J Dent; 2022 Jan; 116():103841. PubMed ID: 34624420 [Abstract] [Full Text] [Related]
2. Occlusal caries detection on 3D models obtained with an intraoral scanner. A validation study. Ntovas P, Michou S, Benetti AR, Bakhshandeh A, Ekstrand K, Rahiotis C, Kakaboura A. J Dent; 2023 Apr; 131():104457. PubMed ID: 36858167 [Abstract] [Full Text] [Related]
3. Development of a Fluorescence-Based Caries Scoring System for an Intraoral Scanner: An in vitro Study. Michou S, Benetti AR, Vannahme C, Hermannsson PG, Bakhshandeh A, Ekstrand KR. Caries Res; 2020 Apr; 54(4):324-335. PubMed ID: 33053552 [Abstract] [Full Text] [Related]
4. Evaluation of detecting proximal caries in posterior teeth via visual inspection, digital bitewing radiography and near-infrared light transillumination. Künisch J, Schaefer G, Pitchika V, Garcia-Godoy F, Hickel R. Am J Dent; 2019 Apr; 32(2):74-80. PubMed ID: 31094141 [Abstract] [Full Text] [Related]
5. In vitro performance of near infrared light transillumination at 780-nm and digital radiography for detection of non-cavitated approximal caries. Abogazalah N, Eckert GJ, Ando M. J Dent; 2017 Aug; 63():44-50. PubMed ID: 28559050 [Abstract] [Full Text] [Related]
6. Secondary Caries Detection and Treatment Decision according to Two Criteria and the Impact of a Three-Dimensional Intraoral Scanner on Gap Evaluation. Moro BLP, Michou S, Cenci MS, Mendes FM, Ekstrand KR. Caries Res; 2023 Aug; 57(2):141-151. PubMed ID: 36754027 [Abstract] [Full Text] [Related]
12. Use of the ICDAS system and two fluorescence-based intraoral devices for examination of occlusal surfaces. Theocharopoulou A, Lagerweij MD, van Strijp AJ. Eur J Paediatr Dent; 2015 Mar; 16(1):51-5. PubMed ID: 25793954 [Abstract] [Full Text] [Related]
13. In vitro validation of near-infrared transillumination at 780 nm for the detection of caries on proximal surfaces. Lederer A, Kunzelmann KH, Heck K, Hickel R, Litzenburger F. Clin Oral Investig; 2019 Nov; 23(11):3933-3940. PubMed ID: 30693402 [Abstract] [Full Text] [Related]
14. Occlusal caries detection and monitoring using a 3D intraoral scanner system. An in vivo assessment. Michou S, Tsakanikou A, Bakhshandeh A, Ekstrand KR, Rahiotis C, Benetti AR. J Dent; 2024 Apr; 143():104900. PubMed ID: 38412900 [Abstract] [Full Text] [Related]
15. Near-infrared transillumination with high dynamic range imaging for occlusal caries detection in vitro. Litzenburger F, Lederer A, Kollmuß M, Hickel R, Kunzelmann KH, Heck K. Lasers Med Sci; 2020 Dec; 35(9):2049-2058. PubMed ID: 32594346 [Abstract] [Full Text] [Related]
16. Validity of near-infrared light transillumination for the assessment of proximal caries in permanent teeth. Wang F, Su C, Yang C, von den Hoff JW, Bian Z, Meng L. Aust Dent J; 2022 Mar; 67(1):46-54. PubMed ID: 34689336 [Abstract] [Full Text] [Related]
19. In vitro performance of the DIAGNOcam for detecting proximal carious lesions adjacent to composite restorations. Elhennawy K, Askar H, Jost-Brinkmann PG, Reda S, Al-Abdi A, Paris S, Schwendicke F. J Dent; 2018 May; 72():39-43. PubMed ID: 29526667 [Abstract] [Full Text] [Related]