These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
326 related items for PubMed ID: 34626763
1. Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective. Su G, Ong HC, Gan YY, Chen WH, Chong CT, Ok YS. Bioresour Technol; 2022 Jan; 344(Pt B):126096. PubMed ID: 34626763 [Abstract] [Full Text] [Related]
2. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production. Xu Y, Hu Y, Peng Y, Yao L, Dong Y, Yang B, Song R. Bioresour Technol; 2020 Mar; 300():122665. PubMed ID: 31918303 [Abstract] [Full Text] [Related]
3. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Chen W, Chen Y, Yang H, Xia M, Li K, Chen X, Chen H. Bioresour Technol; 2017 Dec; 245(Pt A):860-868. PubMed ID: 28926919 [Abstract] [Full Text] [Related]
4. Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas. Xu D, Yang S, Su Y, Shi L, Zhang S, Xiong Y. Waste Manag; 2021 Feb 15; 121():95-104. PubMed ID: 33360310 [Abstract] [Full Text] [Related]
5. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Hassan H, Lim JK, Hameed BH. Bioresour Technol; 2016 Dec 15; 221():645-655. PubMed ID: 27671343 [Abstract] [Full Text] [Related]
6. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Wang Y, Akbarzadeh A, Chong L, Du J, Tahir N, Awasthi MK. Chemosphere; 2022 Jun 15; 297():134181. PubMed ID: 35248592 [Abstract] [Full Text] [Related]
7. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil. Tshikesho RS, Kumar A, Huhnke RL, Apblett A. Bioresour Technol; 2019 Aug 15; 285():121299. PubMed ID: 31003206 [Abstract] [Full Text] [Related]
8. Catalytic upgrading of penicillin fermentation residue bio-oil by metal-supported HZSM-5. Hong C, Li Y, Si Y, Li Z, Xing Y, Chang X, Zheng Z, Hu J, Zhao X. Sci Total Environ; 2021 May 01; 767():144977. PubMed ID: 33636768 [Abstract] [Full Text] [Related]
9. In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: Effects of nitrogen and carbon dioxide environment. Mo L, Dai H, Feng L, Liu B, Li X, Chen Y, Khan S. Bioresour Technol; 2020 Oct 01; 314():123758. PubMed ID: 32629379 [Abstract] [Full Text] [Related]
10. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Zhao Y, Wang Y, Duan D, Ruan R, Fan L, Zhou Y, Dai L, Lv J, Liu Y. Bioresour Technol; 2018 Feb 01; 249():69-75. PubMed ID: 29040862 [Abstract] [Full Text] [Related]
11. Pyrolysis of waste oils for the production of biofuels: A critical review. Su G, Ong HC, Mofijur M, Mahlia TMI, Ok YS. J Hazard Mater; 2022 Feb 15; 424(Pt B):127396. PubMed ID: 34673394 [Abstract] [Full Text] [Related]
12. Synthesis of CaO from waste shells for microwave-assisted catalytic pyrolysis of waste cooking oil to produce aromatic-rich bio-oil. Zhang S, Xiong J, Lu J, Zhou N, Li H, Cui X, Zhang Q, Liu Y, Ruan R, Wang Y. Sci Total Environ; 2022 Jun 25; 827():154186. PubMed ID: 35231512 [Abstract] [Full Text] [Related]
13. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor. Wu Q, Wang Y, Jiang L, Yang Q, Ke L, Peng Y, Yang S, Dai L, Liu Y, Ruan R. Bioresour Technol; 2020 Mar 25; 299():122611. PubMed ID: 31874451 [Abstract] [Full Text] [Related]
14. Enhanced mono-aromatics production by the CH4-assisted pyrolysis of microalgae using Zn-based HZSM-5 catalysts. Farooq A, Rhee GH, Shim H, Valizadeh B, Lee J, Khan M, Jeon BH, Jang SH, Choi YJ, Park YK. Chemosphere; 2024 Mar 25; 351():141251. PubMed ID: 38253084 [Abstract] [Full Text] [Related]
15. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Suriapparao DV, Vinu R, Shukla A, Haldar S. Bioresour Technol; 2020 Apr 25; 302():122775. PubMed ID: 31986334 [Abstract] [Full Text] [Related]
16. A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Leng L, Yang L, Chen J, Leng S, Li H, Li H, Yuan X, Zhou W, Huang H. Bioresour Technol; 2020 Nov 25; 315():123801. PubMed ID: 32673983 [Abstract] [Full Text] [Related]
17. Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber. Chong YY, Thangalazhy-Gopakumar S, Ng HK, Lee LY, Gan S. J Environ Manage; 2019 Oct 01; 247():38-45. PubMed ID: 31229784 [Abstract] [Full Text] [Related]
18. In-situ catalytic upgrading of bio-oil from rapid pyrolysis of biomass over hollow HZSM-5 with mesoporous shell. Chaihad N, Anniwaer A, Choirun Az Zahra A, Kasai Y, Reubroycharoen P, Kusakabe K, Abudula A, Guan G. Bioresour Technol; 2021 Dec 01; 341():125874. PubMed ID: 34523567 [Abstract] [Full Text] [Related]
19. Catalytic flash pyrolysis of Scenedesmus sp. post-extraction residue using low-cost HZSM-5 catalyst with the perspective to produce renewable aromatic hydrocarbons. Marques JAO, Alves JLF, de Oliveira GP, Melo DMA, de Melo Viana GAC, Braga RM. Environ Sci Pollut Res Int; 2024 Mar 01; 31(12):18785-18796. PubMed ID: 38349495 [Abstract] [Full Text] [Related]
20. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer. Ro D, Shafaghat H, Jang SH, Lee HW, Jung SC, Jae J, Cha JS, Park YK. Environ Res; 2019 May 01; 172():658-664. PubMed ID: 30878737 [Abstract] [Full Text] [Related] Page: [Next] [New Search]