These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 34639100

  • 1. Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry (Prunus avium L.).
    Clayton-Cuch D, Yu L, Shirley N, Bradley D, Bulone V, Böttcher C.
    Int J Mol Sci; 2021 Oct 05; 22(19):. PubMed ID: 34639100
    [Abstract] [Full Text] [Related]

  • 2. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.).
    Shen X, Zhao K, Liu L, Zhang K, Yuan H, Liao X, Wang Q, Guo X, Li F, Li T.
    Plant Cell Physiol; 2014 May 05; 55(5):862-80. PubMed ID: 24443499
    [Abstract] [Full Text] [Related]

  • 3. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry.
    Wang Y, Xiao Y, Sun Y, Zhang X, Du B, Turupu M, Yao Q, Gai S, Tong S, Huang J, Li T.
    Plant Physiol; 2023 Jul 03; 192(3):2030-2048. PubMed ID: 36930566
    [Abstract] [Full Text] [Related]

  • 4. Integrated Metabolome, Transcriptome and Long Non-Coding RNA Analysis Reveals Potential Molecular Mechanisms of Sweet Cherry Fruit Ripening.
    Liu G, Fu D, Duan X, Zhou J, Chang H, Xu R, Wang B, Wang Y.
    Int J Mol Sci; 2024 Sep 12; 25(18):. PubMed ID: 39337346
    [Abstract] [Full Text] [Related]

  • 5. RNAseq reveals different transcriptomic responses to GA3 in early and midseason varieties before ripening initiation in sweet cherry fruits.
    Kuhn N, Maldonado J, Ponce C, Arellano M, Time A, Multari S, Martens S, Carrera E, Donoso JM, Sagredo B, Meisel LA.
    Sci Rep; 2021 Jun 22; 11(1):13075. PubMed ID: 34158527
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Linking hormonal profiles with variations in sugar and anthocyanin contents during the natural development and ripening of sweet cherries.
    Teribia N, Tijero V, Munné-Bosch S.
    N Biotechnol; 2016 Dec 25; 33(6):824-833. PubMed ID: 27475901
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.
    Li Q, Chen P, Dai S, Sun Y, Yuan B, Kai W, Pei Y, He S, Liang B, Zhang Y, Leng P.
    J Exp Bot; 2015 Jul 25; 66(13):3765-74. PubMed ID: 25956880
    [Abstract] [Full Text] [Related]

  • 11. bZIP Transcription Factor PavbZIP6 Regulates Anthocyanin Accumulation by Increasing Abscisic Acid in Sweet Cherry.
    Gai S, Du B, Xiao Y, Zhang X, Turupu M, Yao Q, Wang X, Yan Y, Li T.
    Int J Mol Sci; 2024 Sep 23; 25(18):. PubMed ID: 39337692
    [Abstract] [Full Text] [Related]

  • 12. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.).
    Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q.
    PLoS One; 2015 Sep 23; 10(3):e0121164. PubMed ID: 25799516
    [Abstract] [Full Text] [Related]

  • 13. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium).
    Qi X, Dong Y, Liu C, Song L, Chen L, Li M.
    Physiol Plant; 2022 Nov 23; 174(6):e13834. PubMed ID: 36437693
    [Abstract] [Full Text] [Related]

  • 14. Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry.
    Shen X, Guo X, Zhao D, Zhang Q, Jiang Y, Wang Y, Peng X, Wei Y, Zhai Z, Zhao W, Li T.
    Plant Physiol Biochem; 2017 Oct 23; 119():275-285. PubMed ID: 28926798
    [Abstract] [Full Text] [Related]

  • 15. Proteomic Comparison of Fruit Ripening between 'Hedelfinger' Sweet Cherry (Prunus avium L.) and Its Somaclonal Variant 'HS'.
    Prinsi B, Negri AS, Espen L, Piagnani MC.
    J Agric Food Chem; 2016 May 25; 64(20):4171-81. PubMed ID: 27144542
    [Abstract] [Full Text] [Related]

  • 16. Cross-talk between transcriptome, phytohormone and HD-ZIP gene family analysis illuminates the molecular mechanism underlying fruitlet abscission in sweet cherry (Prunus avium L).
    Qiu Z, Wen Z, Hou Q, Qiao G, Yang K, Hong Y, Wen X.
    BMC Plant Biol; 2021 Apr 10; 21(1):173. PubMed ID: 33838661
    [Abstract] [Full Text] [Related]

  • 17. Abscisic acid-responsive transcription factors PavDof2/6/15 mediate fruit softening in sweet cherry.
    Zhai Z, Xiao Y, Wang Y, Sun Y, Peng X, Feng C, Zhang X, Du B, Zhou X, Wang C, Liu Y, Li T.
    Plant Physiol; 2022 Nov 28; 190(4):2501-2518. PubMed ID: 36130298
    [Abstract] [Full Text] [Related]

  • 18. Light and abscisic acid independently regulated FaMYB10 in Fragaria × ananassa fruit.
    Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Masuda T, Noji S.
    Planta; 2015 Apr 28; 241(4):953-65. PubMed ID: 25534946
    [Abstract] [Full Text] [Related]

  • 19. Transcriptomic and Metabolomic Analysis of Quality Changes during Sweet Cherry Fruit Development and Mining of Related Genes.
    Chen C, Chen H, Yang W, Li J, Tang W, Gong R.
    Int J Mol Sci; 2022 Jul 03; 23(13):. PubMed ID: 35806406
    [Abstract] [Full Text] [Related]

  • 20. PacCOP1 negatively regulates anthocyanin biosynthesis in sweet cherry (Prunus avium L.).
    Liang D, Zhu T, Deng Q, Lin L, Tang Y, Wang J, Wang X, Luo X, Zhang H, Lv X, Xia H.
    J Photochem Photobiol B; 2020 Jan 03; 203():111779. PubMed ID: 31927487
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.