These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 34639198

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G, Mu X, Grabowski P, Schmutz J, Lu C.
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [Abstract] [Full Text] [Related]

  • 3. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil.
    Bengtsson JD, Wallis JG, Bai S, Browse J.
    Plant Biotechnol J; 2023 Mar; 21(3):497-505. PubMed ID: 36382992
    [Abstract] [Full Text] [Related]

  • 4. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa.
    Kang J, Snapp AR, Lu C.
    Plant Physiol Biochem; 2011 Feb; 49(2):223-9. PubMed ID: 21215650
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Interactions between genetics and environment shape Camelina seed oil composition.
    Brock JR, Scott T, Lee AY, Mosyakin SL, Olsen KM.
    BMC Plant Biol; 2020 Sep 14; 20(1):423. PubMed ID: 32928104
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes.
    Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J.
    BMC Plant Biol; 2010 Oct 27; 10():233. PubMed ID: 20977772
    [Abstract] [Full Text] [Related]

  • 9. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ, Nam JW, Jaworski JG, Lu C, Scheffler BE, Mockaitis K, Cahoon EB.
    Plant Biotechnol J; 2013 Aug 27; 11(6):759-69. PubMed ID: 23551501
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2.
    Du C, Chen Y, Wang K, Yang Z, Zhao C, Jia Q, Taylor DC, Zhang M.
    J Exp Bot; 2019 Feb 05; 70(3):985-994. PubMed ID: 30371807
    [Abstract] [Full Text] [Related]

  • 12. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.
    Chhikara S, Abdullah HM, Akbari P, Schnell D, Dhankher OP.
    Plant Biotechnol J; 2018 May 05; 16(5):1034-1045. PubMed ID: 28975735
    [Abstract] [Full Text] [Related]

  • 13. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
    Bansal S, Durrett TP.
    Biochimie; 2016 Jan 05; 120():9-16. PubMed ID: 26107412
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.
    Hu Z, Wu Q, Dalal J, Vasani N, Lopez HO, Sederoff HW, Qu R.
    PLoS One; 2017 Jan 05; 12(2):e0172296. PubMed ID: 28212406
    [Abstract] [Full Text] [Related]

  • 17. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR, Kang J, Qi X, Lu C.
    Planta; 2014 Sep 05; 240(3):599-610. PubMed ID: 25023632
    [Abstract] [Full Text] [Related]

  • 18. A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of Eicosapentaenoic Acid in Mice.
    Tejera N, Vauzour D, Betancor MB, Sayanova O, Usher S, Cochard M, Rigby N, Ruiz-Lopez N, Menoyo D, Tocher DR, Napier JA, Minihane AM.
    J Nutr; 2016 Feb 05; 146(2):227-35. PubMed ID: 26791554
    [Abstract] [Full Text] [Related]

  • 19. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase.
    Fahy D, Scheer B, Wallis JG, Browse J.
    Plant Biotechnol J; 2013 May 05; 11(4):480-9. PubMed ID: 23279079
    [Abstract] [Full Text] [Related]

  • 20. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases.
    Kalinger RS, Williams D, Ahmadi Pirshahid A, Pulsifer IP, Rowland O.
    Lipids; 2021 May 05; 56(3):327-344. PubMed ID: 33547664
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.