These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
146 related items for PubMed ID: 34654858
1. Breakthrough whole body energy-specific and tissue-specific photoneutron dosimetry by novel miniature neutron dosimeter/spectrometer. Sohrabi M, Torkamani ME. Sci Rep; 2021 Oct 15; 11(1):20552. PubMed ID: 34654858 [Abstract] [Full Text] [Related]
2. Whole-body photoneutron 360° angular distribution dosimetry by novel "Sohrabi neutron dosimetry methods". Sohrabi M, Ebrahimzadeh Torkamani M, Ali Nedaie H. Phys Med; 2022 Mar 15; 95():167-175. PubMed ID: 35183907 [Abstract] [Full Text] [Related]
3. Breakthrough electroneutron multi-response miniature dosimetry/spectrometry in medical accelerator. Sohrabi M, Malekitakbolagh M, Nedaei HA. Sci Rep; 2024 Apr 25; 14(1):9557. PubMed ID: 38664481 [Abstract] [Full Text] [Related]
4. Fast, epithermal and thermal photoneutron dosimetry in air and in tissue equivalent phantom for a high-energy X-ray medical accelerator. Sohrabi M, Hakimi A. Z Med Phys; 2018 Feb 25; 28(1):49-62. PubMed ID: 28546005 [Abstract] [Full Text] [Related]
5. EFFECTS OF FIELD SIZE AND DEPTH ON PHOTONEUTRON DOSE EQUIVALENT DISTRIBUTIONS IN AN 18 MV X-RAY MEDICAL ACCELERATOR. Hakimi A, Sohrabi M, Rabie Mahdavi S. Radiat Prot Dosimetry; 2017 Nov 01; 176(4):354-364. PubMed ID: 28338868 [Abstract] [Full Text] [Related]
8. A novel position-sensitive mega-size dosimeter for photoneutrons in high-energy X-ray medical accelerators. Sohrabi M, Hakimi A, Mahdavi SR. Phys Med; 2016 Jun 01; 32(6):778-86. PubMed ID: 27174443 [Abstract] [Full Text] [Related]
9. NOVEL 'PHOTONEUTRON VOLUME DOSE EQUIVALENT' HYPOTHESIS AND METHODOLOGY FOR SECOND PRIMARY CANCER RISK ESTIMATION IN HIGH-ENERGY X-RAY MEDICAL ACCELERATORS. Sohrabi M, Hakimi A. Radiat Prot Dosimetry; 2020 Jul 02; 188(4):432-443. PubMed ID: 31943095 [Abstract] [Full Text] [Related]
11. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations. Nedaie HA, Darestani H, Banaee N, Shagholi N, Mohammadi K, Shahvar A, Bayat E. J Med Phys; 2014 Jan 02; 39(1):10-7. PubMed ID: 24600167 [Abstract] [Full Text] [Related]
14. Evaluation of Photoneutron Dose Measured by Bubble Detectors in Conventional Linacs and Cyberknife Unit: Effective Dose and Secondary Malignancy Risk Estimation. Biltekin F, Yeginer M, Ozyigit G. Technol Cancer Res Treat; 2016 Aug 02; 15(4):560-5. PubMed ID: 26152750 [Abstract] [Full Text] [Related]
15. The effect of the flattening filter on photoneutron production at 10 MV in the Varian TrueBeam linear accelerator. Montgomery L, Evans M, Liang L, Maglieri R, Kildea J. Med Phys; 2018 Oct 02; 45(10):4711-4719. PubMed ID: 30141186 [Abstract] [Full Text] [Related]
16. Accelerator room photoneutron and photon background measurements using thermoluminescent dosimeters. Anderson DW, Hwang CC. Health Phys; 1983 Feb 02; 44(2):115-25. PubMed ID: 6402461 [Abstract] [Full Text] [Related]
17. Evaluation of the linac neutron dose profile for various depths and field sizes: a Monte Carlo study. Prasada DNY, Ciamaudi N, Fadli M, Tursinah R, Pawiro SA. Biomed Phys Eng Express; 2021 Oct 20; 7(6):. PubMed ID: 34619664 [Abstract] [Full Text] [Related]
18. Neutron and high energy photon fluence estimation in CLINAC using gold activation foils. Haddad K, Anjak O, Yousef B. Rep Pract Oncol Radiother; 2019 Oct 20; 24(1):41-46. PubMed ID: 30337847 [Abstract] [Full Text] [Related]
19. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator. Bading JR, Zeitz L, Laughlin JS. Med Phys; 1982 Oct 20; 9(6):835-43. PubMed ID: 6819434 [Abstract] [Full Text] [Related]