These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 34669730

  • 1. The cariogenic effect of starch on oral microcosm grown within the dual constant depth film fermenter.
    Roberts JM, Bradshaw DJ, Lynch RJM, Higham SM, Valappil SP.
    PLoS One; 2021; 16(10):e0258881. PubMed ID: 34669730
    [Abstract] [Full Text] [Related]

  • 2. Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque.
    Owens GJ, Lynch RJM, Hope CK, Cooper L, Higham SM, Valappil SP.
    Caries Res; 2017; 51(3):188-197. PubMed ID: 28245470
    [Abstract] [Full Text] [Related]

  • 3. Enamel and dentine demineralization by a combination of starch and sucrose in a biofilm - caries model.
    Botelho JN, Villegas-Salinas M, Troncoso-Gajardo P, Giacaman RA, Cury JA.
    Braz Oral Res; 2016 May 20; 30(1):. PubMed ID: 27223133
    [Abstract] [Full Text] [Related]

  • 4. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges.
    Azevedo MS, van de Sande FH, Romano AR, Cenci MS.
    Caries Res; 2011 May 20; 45(6):510-7. PubMed ID: 21967836
    [Abstract] [Full Text] [Related]

  • 5. Monitoring the maturation process of a dental microcosm biofilm using the Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Kim YS, Lee ES, Kwon HK, Kim BI.
    J Dent; 2014 Jun 20; 42(6):691-6. PubMed ID: 24657554
    [Abstract] [Full Text] [Related]

  • 6. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Lee ES, Kang SM, Ko HY, Kwon HK, Kim BI.
    J Dent; 2013 Dec 20; 41(12):1264-70. PubMed ID: 24012520
    [Abstract] [Full Text] [Related]

  • 7. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system.
    Shu M, Wong L, Miller JH, Sissons CH.
    Arch Oral Biol; 2000 Jan 20; 45(1):27-40. PubMed ID: 10669090
    [Abstract] [Full Text] [Related]

  • 8. Validation of a cariogenic biofilm model by evaluating the effect of fluoride on enamel demineralization.
    Marin LM, Cury JA, Siqueira WL.
    J Microbiol Methods; 2022 Jan 20; 192():106386. PubMed ID: 34848194
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Response of carious enamel to TiF4 varnish treatment under diverse cariogenic activities in situ.
    Comar LP, Souza BM, Martins J, Santos MG, Buzalaf MAR, Magalhães AC.
    J Dent; 2017 Aug 20; 63():81-84. PubMed ID: 28579385
    [Abstract] [Full Text] [Related]

  • 11. A three-species biofilm model for the evaluation of enamel and dentin demineralization.
    Cavalcanti YW, Bertolini MM, da Silva WJ, Del-Bel-Cury AA, Tenuta LM, Cury JA.
    Biofouling; 2014 Aug 20; 30(5):579-88. PubMed ID: 24730462
    [Abstract] [Full Text] [Related]

  • 12. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization.
    Thurnheer T, Belibasakis GN.
    Arch Oral Biol; 2018 May 20; 89():77-83. PubMed ID: 29482049
    [Abstract] [Full Text] [Related]

  • 13. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model.
    Giacaman RA, Muñoz MJ, Ccahuana-Vasquez RA, Muñoz-Sandoval C, Cury JA.
    Caries Res; 2012 May 20; 46(5):460-6. PubMed ID: 22759448
    [Abstract] [Full Text] [Related]

  • 14. Validation of a Cariogenic Biofilm Model to Evaluate the Effect of Fluoride on Enamel and Root Dentine Demineralization.
    Fernández CE, Tenuta LM, Cury JA.
    PLoS One; 2016 May 20; 11(1):e0146478. PubMed ID: 26731743
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model.
    Cenci MS, Pereira-Cenci T, Cury JA, Ten Cate JM.
    Caries Res; 2009 May 20; 43(2):97-102. PubMed ID: 19321986
    [Abstract] [Full Text] [Related]

  • 17. Arginine and sodium fluoride affect the microbial composition and reduce biofilm metabolism and enamel mineral loss in an oral microcosm model.
    Sampaio C, Méndez DAC, Buzalaf MAR, Pessan JP, Cruvinel T.
    J Dent; 2024 Jun 20; 145():104997. PubMed ID: 38621525
    [Abstract] [Full Text] [Related]

  • 18. Cariogenic effects of probiotic Lactobacillus rhamnosus GG in a dental biofilm model.
    Schwendicke F, Dörfer C, Kneist S, Meyer-Lueckel H, Paris S.
    Caries Res; 2014 Jun 20; 48(3):186-92. PubMed ID: 24480927
    [Abstract] [Full Text] [Related]

  • 19. Dual-species biofilm of Streptococcus mutans and Candida albicans produces subsurface caries lesions on bovine enamel.
    Santana JS, Delbem ACB, Pessan JP, Sampaio C, de Morais LA, Pereira TL, Monteiro DR, Hosida TY.
    Arch Oral Biol; 2024 Oct 20; 166():106029. PubMed ID: 38924874
    [Abstract] [Full Text] [Related]

  • 20. The role of human milk and sucrose on cariogenicity of microcosm biofilms.
    Signori C, Hartwig AD, Silva-Júnior IFD, Correa MB, Azevedo MS, Cenci MS.
    Braz Oral Res; 2018 Oct 11; 32():e109. PubMed ID: 30328901
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.