These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


332 related items for PubMed ID: 34676458

  • 1. Molecular insights into sensing, regulation and improving of heat tolerance in plants.
    Saini N, Nikalje GC, Zargar SM, Suprasanna P.
    Plant Cell Rep; 2022 Mar; 41(3):799-813. PubMed ID: 34676458
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L.
    Kaur R, Sinha K, Bhunia RK.
    Mol Biol Rep; 2019 Apr; 46(2):2577-2593. PubMed ID: 30758807
    [Abstract] [Full Text] [Related]

  • 7. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T.
    Mol Biol Rep; 2022 Jun; 49(6):5771-5785. PubMed ID: 35182323
    [Abstract] [Full Text] [Related]

  • 8. One Heat Shock Transcription Factor Confers High Thermal Tolerance in Clematis Plants.
    Wang R, Mao C, Jiang C, Zhang L, Peng S, Zhang Y, Feng S, Ming F.
    Int J Mol Sci; 2021 Mar 12; 22(6):. PubMed ID: 33809330
    [Abstract] [Full Text] [Related]

  • 9. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway.
    Hu XJ, Chen D, Lynne Mclntyre C, Fernanda Dreccer M, Zhang ZB, Drenth J, Kalaipandian S, Chang H, Xue GP.
    Plant Cell Environ; 2018 Jan 12; 41(1):79-98. PubMed ID: 28370204
    [Abstract] [Full Text] [Related]

  • 10. Insights into heat response mechanisms in Clematis species: physiological analysis, expression profiles and function verification.
    Zhang H, Jiang C, Wang R, Zhang L, Gai R, Peng S, Zhang Y, Mao C, Lou Y, Mo J, Feng S, Ming F.
    Plant Mol Biol; 2021 Aug 12; 106(6):569-587. PubMed ID: 34260001
    [Abstract] [Full Text] [Related]

  • 11. Heat Stress Responses and Thermotolerance in Maize.
    Li Z, Howell SH.
    Int J Mol Sci; 2021 Jan 19; 22(2):. PubMed ID: 33477941
    [Abstract] [Full Text] [Related]

  • 12. Unveiling differential expression profiles of the wheat DOG1 gene family and functional analysis of the association between TaDOG1-1 and heat stress tolerance in transgenic Arabidopsis.
    Ko CS, Kim JB, Kim DY, Seo YW, Hong MJ.
    Plant Physiol Biochem; 2024 Feb 19; 207():108325. PubMed ID: 38176188
    [Abstract] [Full Text] [Related]

  • 13. [Biological characteristics of heat shock transcription factors and their roles in abiotic stress adaptation of higher plant].
    Shao KZ, Lyu XP, Li JL, Chen J, Zhao LY, Ren W, Zhang JL.
    Ying Yong Sheng Tai Xue Bao; 2022 Aug 19; 33(8):2286-2296. PubMed ID: 36043838
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. [Heat Shock Proteins in Plant Protection from Oxidative Stress].
    Yurina NP.
    Mol Biol (Mosk); 2023 Aug 19; 57(6):949-964. PubMed ID: 38062952
    [Abstract] [Full Text] [Related]

  • 16. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.
    Wang X, Huang W, Liu J, Yang Z, Huang B.
    Plant Biotechnol J; 2017 Feb 19; 15(2):237-248. PubMed ID: 27500592
    [Abstract] [Full Text] [Related]

  • 17. Unfolding molecular switches in plant heat stress resistance: A comprehensive review.
    Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T.
    Plant Cell Rep; 2022 Mar 19; 41(3):775-798. PubMed ID: 34401950
    [Abstract] [Full Text] [Related]

  • 18. Expression of ZmNAGK in tobacco enhances heat stress tolerance via activation of antioxidant-associated defense.
    Liu W, Zhang Y, Zhang B, Zou H.
    Plant Physiol Biochem; 2023 Jun 19; 199():107719. PubMed ID: 37148659
    [Abstract] [Full Text] [Related]

  • 19. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco.
    Panzade KP, Vishwakarma H, Padaria JC.
    Mol Biol Rep; 2020 May 19; 47(5):3821-3831. PubMed ID: 32367315
    [Abstract] [Full Text] [Related]

  • 20. Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco.
    Zhu X, Wang Y, Liu Y, Zhou W, Yan B, Yang J, Shen Y.
    PLoS One; 2018 May 19; 13(11):e0207277. PubMed ID: 30427910
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.