These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 34688089
1. Engineering the endoplasmic reticulum secretory pathway in Trichoderma reesei for improved cellulase production. Shen L, Gao J, Wang Y, Li X, Liu H, Zhong Y. Enzyme Microb Technol; 2021 Dec; 152():109923. PubMed ID: 34688089 [Abstract] [Full Text] [Related]
2. Dissecting Cellular Function and Distribution of β-Glucosidases in Trichoderma reesei. Pang AP, Wang H, Luo Y, Yang Z, Liu Z, Wang Z, Li B, Yang S, Zhou Z, Lu X, Wu FG, Lu Z, Lin F. mBio; 2021 May 11; 12(3):. PubMed ID: 33975944 [Abstract] [Full Text] [Related]
3. Transmembrane transport process and endoplasmic reticulum function facilitate the role of gene cel1b in cellulase production of Trichoderma reesei. Pang AP, Luo Y, Hu X, Zhang F, Wang H, Gao Y, Durrani S, Li C, Shi X, Wu FG, Li BZ, Lu Z, Lin F. Microb Cell Fact; 2022 May 19; 21(1):90. PubMed ID: 35590356 [Abstract] [Full Text] [Related]
4. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z. Microb Cell Fact; 2016 Sep 01; 15(1):151. PubMed ID: 27585813 [Abstract] [Full Text] [Related]
5. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Shida Y, Furukawa T, Ogasawara W. Biosci Biotechnol Biochem; 2016 Sep 01; 80(9):1712-29. PubMed ID: 27075508 [Abstract] [Full Text] [Related]
7. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. Meng QS, Liu CG, Zhao XQ, Bai FW. J Biotechnol; 2018 Nov 10; 285():56-63. PubMed ID: 30194052 [Abstract] [Full Text] [Related]
12. Optimizing microbioreactor cultivation strategies for Trichoderma reesei: from batch to fed-batch operations. Rohr K, Gremm L, Geinitz B, Jourdier E, Wiechert W, Ben Chaabane F, Oldiges M. Microb Cell Fact; 2024 Apr 15; 23(1):112. PubMed ID: 38622596 [Abstract] [Full Text] [Related]
13. Engineering of Trichoderma reesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3. Chen Y, Wu C, Fan X, Zhao X, Zhao X, Shen T, Wei D, Wang W. Biotechnol Biofuels; 2020 Apr 15; 13():62. PubMed ID: 32266008 [Abstract] [Full Text] [Related]
14. Trichoderma reesei ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes during Growth on Cellulose. Chen Y, Lin A, Liu P, Fan X, Wu C, Li N, Wei L, Wang W, Wei D. Appl Environ Microbiol; 2021 Jul 13; 87(15):e0059321. PubMed ID: 34047636 [Abstract] [Full Text] [Related]
15. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library. Zhang F, Bai F, Zhao X. Biotechnol J; 2016 Oct 13; 11(10):1282-1290. PubMed ID: 27578229 [Abstract] [Full Text] [Related]
18. Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Kupski L, Pagnussatt FA, Buffon JG, Furlong EB. Appl Biochem Biotechnol; 2014 Jan 13; 172(1):458-68. PubMed ID: 24092451 [Abstract] [Full Text] [Related]
19. Employment of the CRISPR/Cas9 system to improve cellulase production in Trichoderma reesei. Pant S, Ritika, Nag P, Ghati A, Chakraborty D, Maximiano MR, Franco OL, Mandal AK, Kuila A. Biotechnol Adv; 2022 Nov 13; 60():108022. PubMed ID: 35870723 [Abstract] [Full Text] [Related]