These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 34702838

  • 41. Identification of some novel AHAS inhibitors via molecular docking and virtual screening approach.
    Wang JG, Xiao YJ, Li YH, Ma Y, Li ZM.
    Bioorg Med Chem; 2007 Jan 01; 15(1):374-80. PubMed ID: 17049866
    [Abstract] [Full Text] [Related]

  • 42. Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase.
    Jung IP, Ha NR, Lee SC, Ryoo SW, Yoon MY.
    Int J Antimicrob Agents; 2016 Sep 01; 48(3):247-58. PubMed ID: 27451857
    [Abstract] [Full Text] [Related]

  • 43. Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones.
    Zohar Y, Einav M, Chipman DM, Barak Z.
    Biochim Biophys Acta; 2003 Jun 26; 1649(1):97-105. PubMed ID: 12818195
    [Abstract] [Full Text] [Related]

  • 44. Mutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms.
    Hill CM, Duggleby RG.
    Biochem J; 1998 Nov 01; 335 ( Pt 3)(Pt 3):653-61. PubMed ID: 9794808
    [Abstract] [Full Text] [Related]

  • 45. Chemical synthesis, biological activities, and molecular simulations of novel sulfonylurea compounds bearing ortho-alkoxy substitutions.
    Shang MH, Zhang K, Zhang JS, Niu CW, Li YH, Song FH, Wang JG.
    Chem Biol Drug Des; 2022 Oct 01; 100(4):487-501. PubMed ID: 35792871
    [Abstract] [Full Text] [Related]

  • 46. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase.
    McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG.
    Proc Natl Acad Sci U S A; 2006 Jan 17; 103(3):569-73. PubMed ID: 16407096
    [Abstract] [Full Text] [Related]

  • 47. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding.
    Xiao L, Madison V, Chau AS, Loebenberg D, Palermo RE, McNicholas PM.
    Antimicrob Agents Chemother; 2004 Feb 17; 48(2):568-74. PubMed ID: 14742211
    [Abstract] [Full Text] [Related]

  • 48. Partitioning of penoxsulam, a new sulfonamide herbicide.
    Jabusch TW, Tjeerdema RS.
    J Agric Food Chem; 2005 Sep 07; 53(18):7179-83. PubMed ID: 16131127
    [Abstract] [Full Text] [Related]

  • 49. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design.
    Miao Y, Tenor JL, Toffaletti DL, Maskarinec SA, Liu J, Lee RE, Perfect JR, Brennan RG.
    mBio; 2017 Jul 25; 8(4):. PubMed ID: 28743811
    [Abstract] [Full Text] [Related]

  • 50. Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus.
    Ding Z, Ni T, Xie F, Hao Y, Yu S, Chai X, Jin Y, Wang T, Jiang Y, Zhang D.
    Bioorg Med Chem Lett; 2020 Feb 15; 30(4):126951. PubMed ID: 31926784
    [Abstract] [Full Text] [Related]

  • 51. Commercial Herbicides Can Trigger the Oxidative Inactivation of Acetohydroxyacid Synthase.
    Lonhienne T, Nouwens A, Williams CM, Fraser JA, Lee YT, West NP, Guddat LW.
    Angew Chem Int Ed Engl; 2016 Mar 18; 55(13):4247-51. PubMed ID: 26924714
    [Abstract] [Full Text] [Related]

  • 52. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data.
    Duggleby RG, Pang SS, Yu H, Guddat LW.
    Eur J Biochem; 2003 Jul 18; 270(13):2895-904. PubMed ID: 12823560
    [Abstract] [Full Text] [Related]

  • 53. Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors.
    Pham NC, Moon JY, Cho JH, Lee SJ, Park JS, Kim DE, Park Y, Yoon MY.
    Biosci Biotechnol Biochem; 2010 Jul 18; 74(11):2281-6. PubMed ID: 21071847
    [Abstract] [Full Text] [Related]

  • 54. In silico modeling of the AHAS inhibition of an augmented series of pyrimidine herbicides and design of novel derivatives.
    de Faria AC, Daré JK, da Cunha EFF, Freitas MP.
    J Mol Graph Model; 2022 Nov 18; 116():108242. PubMed ID: 35671569
    [Abstract] [Full Text] [Related]

  • 55. Design, synthesis and herbicidal activity study of aryl 2,6-disubstituted sulfonylureas as potent acetohydroxyacid synthase inhibitors.
    Wei W, Zhou S, Cheng D, Li Y, Liu J, Xie Y, Li Y, Li Z.
    Bioorg Med Chem Lett; 2017 Aug 01; 27(15):3365-3369. PubMed ID: 28610985
    [Abstract] [Full Text] [Related]

  • 56. Structures of fungal and plant acetohydroxyacid synthases.
    Lonhienne T, Low YS, Garcia MD, Croll T, Gao Y, Wang Q, Brillault L, Williams CM, Fraser JA, McGeary RP, West NP, Landsberg MJ, Rao Z, Schenk G, Guddat LW.
    Nature; 2020 Oct 01; 586(7828):317-321. PubMed ID: 32640464
    [Abstract] [Full Text] [Related]

  • 57. Amino acids conferring herbicide resistance in tobacco acetohydroxyacid synthase.
    Le DT, Choi JD, Tran LS.
    GM Crops; 2010 Oct 01; 1(2):62-7. PubMed ID: 21865873
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Stress-Induced Changes in the Lipid Microenvironment of β-(1,3)-d-Glucan Synthase Cause Clinically Important Echinocandin Resistance in Aspergillus fumigatus.
    Satish S, Jiménez-Ortigosa C, Zhao Y, Lee MH, Dolgov E, Krüger T, Park S, Denning DW, Kniemeyer O, Brakhage AA, Perlin DS.
    mBio; 2019 Jun 04; 10(3):. PubMed ID: 31164462
    [Abstract] [Full Text] [Related]

  • 60. Discovery of a New Class of Lipophilic Pyrimidine-Biphenyl Herbicides Using an Integrated Experimental-Computational Approach.
    Yan Y, Chen Y, Hu H, Jiang Y, Kang Z, Wu J.
    Molecules; 2024 May 21; 29(11):. PubMed ID: 38893290
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.