These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
295 related items for PubMed ID: 34705087
21. Simple Scoring Model Based on Enhanced CT in Preoperative Prediction of Biological Risk of Gastrointestinal Stromal Tumor. Wang Y, Bai G, Zhang H, Chen W. Technol Cancer Res Treat; 2023; 22():15330338231194502. PubMed ID: 37563940 [Abstract] [Full Text] [Related]
22. Correlation of CT radiomic features for GISTs with pathological classification and molecular subtypes: preliminary and monocentric experience. Palatresi D, Fedeli F, Danti G, Pasqualini E, Castiglione F, Messerini L, Massi D, Bettarini S, Tortoli P, Busoni S, Pradella S, Miele V. Radiol Med; 2022 Feb; 127(2):117-128. PubMed ID: 35022956 [Abstract] [Full Text] [Related]
27. The value of a nomogram model based on CT imaging features in differentiating duodenal gastrointestinal stromal tumors from pancreatic head neuroendocrine tumors. Yan W, Yu H, Xu C, Zeng M, Wang M. Abdom Radiol (NY); 2024 Sep 20. PubMed ID: 39302444 [Abstract] [Full Text] [Related]
28. Predictive features of CT for risk stratifications in patients with primary gastrointestinal stromal tumour. Zhou C, Duan X, Zhang X, Hu H, Wang D, Shen J. Eur Radiol; 2016 Sep 20; 26(9):3086-93. PubMed ID: 26699371 [Abstract] [Full Text] [Related]
31. Development and validation of a CT-texture analysis nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes. Ren C, Li M, Zhang Y, Zhang S. Cancer Imaging; 2020 Dec 11; 20(1):86. PubMed ID: 33308325 [Abstract] [Full Text] [Related]
33. Radiomics Analysis of Multiphasic Computed Tomography Images for Distinguishing High-Risk Thymic Epithelial Tumors From Low-Risk Thymic Epithelial Tumors. Liufu Y, Wen Y, Wu W, Su R, Liu S, Li J, Pan X, Chen K, Guan Y. J Comput Assist Tomogr; 2020 Dec 11; 47(2):220-228. PubMed ID: 36877755 [Abstract] [Full Text] [Related]
37. [The value of conventional magnetic resonance imaging based radiomic model in predicting the texture of pituitary macroadenoma]. Chen JM, Wan Q, Zhu HY, Ge YQ, Wu LL, Zhai J, Ding ZM. Zhonghua Yi Xue Za Zhi; 2020 Dec 08; 100(45):3626-3631. PubMed ID: 33333688 [Abstract] [Full Text] [Related]
38. Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma? Wang X, Song G, Jiang H, Zheng L, Pang P, Xu J. Abdom Radiol (NY); 2021 Sep 08; 46(9):4289-4300. PubMed ID: 33909090 [Abstract] [Full Text] [Related]
39. Building contrast-enhanced CT-based models for preoperatively predicting malignant potential and Ki67 expression of small intestine gastrointestinal stromal tumors (GISTs). Zhu MP, Ding QL, Xu JX, Jiang CY, Wang J, Wang C, Yu RS. Abdom Radiol (NY); 2022 Sep 08; 47(9):3161-3173. PubMed ID: 33765174 [Abstract] [Full Text] [Related]
40. Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics. Zhuo M, Tang Y, Guo J, Qian Q, Xue E, Chen Z. J Med Ultrason (2001); 2024 Jan 08; 51(1):71-82. PubMed ID: 37798591 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]