These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 34714310
21. 3D negative thermal expansion in orthorhombic MIL-68(In). Liu Z, Li Q, Zhu H, Lin K, Deng J, Chen J, Xing X. Chem Commun (Camb); 2018 May 31; 54(45):5712-5715. PubMed ID: 29774355 [Abstract] [Full Text] [Related]
22. Exploring negative thermal expansion materials with bulk framework structures and their relevant scaling relationships through multi-step machine learning. Cai Y, Wang C, Yuan H, Guo Y, Cho JH, Xing X, Jia Y. Mater Horiz; 2024 Jun 17; 11(12):2914-2925. PubMed ID: 38567484 [Abstract] [Full Text] [Related]
23. Giant uniaxial negative thermal expansion in FeZr2 alloy over a wide temperature range. Xu M, Li Q, Song Y, Xu Y, Sanson A, Shi N, Wang N, Sun Q, Wang C, Chen X, Qiao Y, Long F, Liu H, Zhang Q, Venier A, Ren Y, d'Acapito F, Olivi L, De Souza DO, Xing X, Chen J. Nat Commun; 2023 Jul 24; 14(1):4439. PubMed ID: 37488108 [Abstract] [Full Text] [Related]
24. Entropic elasticity and negative thermal expansion in a simple cubic crystal. Wendt D, Bozin E, Neuefeind J, Page K, Ku W, Wang L, Fultz B, Tkachenko AV, Zaliznyak IA. Sci Adv; 2019 Nov 24; 5(11):eaay2748. PubMed ID: 31701009 [Abstract] [Full Text] [Related]
25. Mixed anion control of enhanced negative thermal expansion in the oxysulfide of PbTiO3. Pan Z, Liang Z, Wang X, Fang YW, Ye X, Liu Z, Nishikubo T, Sakai Y, Shen X, Liu Q, Kawaguchi S, Zhan F, Fan L, Wang YY, Ma CY, Jiang X, Lin Z, Yu R, Xing X, Azuma M, Long Y. Mater Horiz; 2024 Oct 28; 11(21):5394-5401. PubMed ID: 39162707 [Abstract] [Full Text] [Related]
26. Thermomechanical properties of zero thermal expansion materials from theory and experiments. Erlebach A, Thieme C, Müller C, Hoffmann S, Höche T, Rüssel C, Sierka M. Phys Chem Chem Phys; 2020 Sep 07; 22(33):18518-18525. PubMed ID: 32780039 [Abstract] [Full Text] [Related]
27. Effect of bond on negative thermal expansion of Prussian blue analogues MCo(CN)6(M=Fe, Ti and Sc): a first-principles study. Li Y, Gao Q, Chang D, Sun P, Liu J, Jia Y, Liang E, Sun Q. J Phys Condens Matter; 2020 Aug 13; 32(45):. PubMed ID: 32688349 [Abstract] [Full Text] [Related]
28. Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)6 Prussian Blue Analogues. Gao Q, Shi N, Sun Q, Sanson A, Milazzo R, Carnera A, Zhu H, Lapidus SH, Ren Y, Huang Q, Chen J, Xing X. Inorg Chem; 2018 Sep 04; 57(17):10918-10924. PubMed ID: 30106577 [Abstract] [Full Text] [Related]
29. Maximizing negative thermal expansion via rigid unit modes: a geometry-based approach. Grima JN, Bajada M, Scerri S, Attard D, Dudek KK, Gatt R. Proc Math Phys Eng Sci; 2015 Jul 08; 471(2179):20150188. PubMed ID: 26345087 [Abstract] [Full Text] [Related]
30. Antiferroelectricity-Induced Negative Thermal Expansion in Double Perovskite Pb2 CoMoO6. Zhao H, Pan Z, Shen X, Zhao J, Lu D, Zhang J, Hu Z, Kuo CY, Chen CT, Chan TS, Sahle CJ, Dong C, Nishikubo T, Koike T, Deng ZY, Hong J, Yu R, Yu P, Azuma M, Jin C, Long Y. Small; 2024 Jan 08; 20(2):e2305219. PubMed ID: 37658514 [Abstract] [Full Text] [Related]
31. Magnetic structure and uniaxial negative thermal expansion in antiferromagnetic CrSb. Yuan J, Song Y, Xing X, Chen J. Dalton Trans; 2020 Dec 22; 49(48):17605-17611. PubMed ID: 33241795 [Abstract] [Full Text] [Related]
32. Large Negative Thermal Expansion Induced by Synergistic Effects of Ferroelectrostriction and Spin Crossover in PbTiO3-Based Perovskites. Pan Z, Chen J, Yu R, Patra L, Ravindran P, Sanson A, Milazzo R, Carnera A, Hu L, Wang L, Yamamoto H, Ren Y, Huang Q, Sakai Y, Nishikubo T, Ogata T, Fan X, Li Y, Li G, Hojo H, Azuma M, Xing X. Chem Mater; 2019 Jan 22; 31(4):. PubMed ID: 38711569 [Abstract] [Full Text] [Related]
33. Pressure enhanced negative thermal expansion in 2H CuScO2 from first-principles calculations. Chang D, Tang C, Hu Q, Wang C, Jia Y. Phys Chem Chem Phys; 2022 Jul 13; 24(27):16622-16627. PubMed ID: 35766117 [Abstract] [Full Text] [Related]
34. Negative Thermal Expansion in ABC(MoO4)3 Compounds. Zhao H, Qiao Y, Zhao K, Wang Q, Zhang P, Guo J, Chao M, Liang E, Gao Q. Small; 2024 Oct 13; 20(42):e2403000. PubMed ID: 38923124 [Abstract] [Full Text] [Related]
35. Discovering Large Isotropic Negative Thermal Expansion in Framework Compound AgB(CN)4 via the Concept of Average Atomic Volume. Gao Q, Wang J, Sanson A, Sun Q, Liang E, Xing X, Chen J. J Am Chem Soc; 2020 Apr 15; 142(15):6935-6939. PubMed ID: 32233466 [Abstract] [Full Text] [Related]
36. Colossal negative thermal expansion in reduced layered ruthenate. Takenaka K, Okamoto Y, Shinoda T, Katayama N, Sakai Y. Nat Commun; 2017 Jan 10; 8():14102. PubMed ID: 28071647 [Abstract] [Full Text] [Related]
37. Negative thermal expansion materials: technological key for control of thermal expansion. Takenaka K. Sci Technol Adv Mater; 2012 Feb 10; 13(1):013001. PubMed ID: 27877465 [Abstract] [Full Text] [Related]
38. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Wu Y, Peterson VK, Luks E, Darwish TA, Kepert CJ. Angew Chem Int Ed Engl; 2014 May 12; 53(20):5175-8. PubMed ID: 24692065 [Abstract] [Full Text] [Related]