These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 34715524

  • 21. Improvement of wastewater sludge dewatering using ferric chloride, aluminum sulfate, and calcium oxide (experimental investigation and descriptive statistical analysis).
    Ranjbar F, Karrabi M, Danesh S, Gheibi M.
    Water Environ Res; 2021 Jul; 93(7):1138-1149. PubMed ID: 33522044
    [Abstract] [Full Text] [Related]

  • 22. A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants.
    Vilela P, Liu H, Lee S, Hwangbo S, Nam K, Yoo C.
    Sci Total Environ; 2018 Aug 15; 633():989-998. PubMed ID: 29758920
    [Abstract] [Full Text] [Related]

  • 23. Removal of silver nanoparticles in aqueous solution by activated sludge: Mechanism and characteristics.
    Chen L, Feng W, Fan J, Zhang K, Gu Z.
    Sci Total Environ; 2020 Apr 01; 711():135155. PubMed ID: 32000348
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids.
    Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV.
    Environ Sci Technol; 2014 Apr 01; 48(1):104-12. PubMed ID: 24266610
    [Abstract] [Full Text] [Related]

  • 26. Concentration-dependent responses of soil bacterial, fungal and nitrifying communities to silver nano and micron particles.
    McGee CF, Storey S, Clipson N, Doyle E.
    Environ Sci Pollut Res Int; 2018 Jul 01; 25(19):18693-18704. PubMed ID: 29705905
    [Abstract] [Full Text] [Related]

  • 27. Fate of silver nanoparticles in constructed wetlands and its influence on performance and microbiome in the ecosystems after a 450-day exposure.
    Huang J, Xiao J, Chen M, Cao C, Yan C, Ma Y, Huang M, Wang M.
    Bioresour Technol; 2019 Jun 01; 281():107-117. PubMed ID: 30807995
    [Abstract] [Full Text] [Related]

  • 28. Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.
    Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM.
    Environ Sci Technol; 2016 Aug 02; 50(15):8274-81. PubMed ID: 27380126
    [Abstract] [Full Text] [Related]

  • 29. Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil.
    Li M, Ruan LY, Dang F, Liu HL, Zhou DM, Yin B, Wang JS.
    Environ Pollut; 2022 May 01; 300():118954. PubMed ID: 35122920
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism.
    Giao NT, Limpiyakorn T, Kunapongkiti P, Thuptimdang P, Siripattanakul-Ratpukdi S.
    Environ Sci Pollut Res Int; 2017 Apr 01; 24(10):9229-9240. PubMed ID: 28224336
    [Abstract] [Full Text] [Related]

  • 33. Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment.
    Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, von der Kammer F, Unrine JM.
    Environ Pollut; 2013 Nov 01; 182():141-9. PubMed ID: 23911623
    [Abstract] [Full Text] [Related]

  • 34. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment.
    Whiteley CM, Dalla Valle M, Jones KC, Sweetman AJ.
    Environ Sci Process Impacts; 2013 Oct 01; 15(11):2050-8. PubMed ID: 24056694
    [Abstract] [Full Text] [Related]

  • 35. Assessing the risks of silver nanoparticle-concentrated matrix application in agricultural soil: Implications for plant and soil enzymes.
    Kwak JI, Nam SH, An YJ.
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Jul 01; 269():109631. PubMed ID: 37061150
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. The effect of sulfidation and soil type on the uptake of silver nanoparticles in annelid Enchytraeus crypticus.
    Khodaparast Z, Loureiro S, van Gestel CAM.
    NanoImpact; 2022 Oct 01; 28():100433. PubMed ID: 36273810
    [Abstract] [Full Text] [Related]

  • 38. The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen.
    Zhang L, Zeng G, Dong H, Chen Y, Zhang J, Yan M, Zhu Y, Yuan Y, Xie Y, Huang Z.
    Bioresour Technol; 2017 Apr 01; 230():132-139. PubMed ID: 28189966
    [Abstract] [Full Text] [Related]

  • 39. Fate and inhibitory effect of silver nanoparticles in high rate moving bed biofilm reactors.
    Alizadeh S, Ghoshal S, Comeau Y.
    Sci Total Environ; 2019 Jan 10; 647():1199-1210. PubMed ID: 30180328
    [Abstract] [Full Text] [Related]

  • 40. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.
    Rasool K, Lee DS.
    J Nanosci Nanotechnol; 2016 May 10; 16(5):4456-63. PubMed ID: 27483773
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.