These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


868 related items for PubMed ID: 34719227

  • 1. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W, Jiang L, Wen L.
    Acc Chem Res; 2021 Nov 16; 54(22):4154-4165. PubMed ID: 34719227
    [Abstract] [Full Text] [Related]

  • 2. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W, Tian Y, Jiang L.
    Acc Chem Res; 2013 Dec 17; 46(12):2834-46. PubMed ID: 23713693
    [Abstract] [Full Text] [Related]

  • 3. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J, Guo W, Feng D, Wang H, Zhao D, Jiang L.
    J Am Chem Soc; 2014 Sep 03; 136(35):12265-72. PubMed ID: 25137214
    [Abstract] [Full Text] [Related]

  • 4. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X, Liu S, Crittenden J, Chen Y.
    ACS Nano; 2021 Apr 27; 15(4):5838-5860. PubMed ID: 33844502
    [Abstract] [Full Text] [Related]

  • 5. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P, Du X, Chen R, Zhou J, Agostini M, Sun J, Xiao L.
    Molecules; 2021 Sep 02; 26(17):. PubMed ID: 34500776
    [Abstract] [Full Text] [Related]

  • 6. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion.
    Zhang Y, Wang H, Wang J, Li L, Sun H, Wang C.
    Chem Asian J; 2023 Dec 01; 18(23):e202300876. PubMed ID: 37886875
    [Abstract] [Full Text] [Related]

  • 7. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes.
    Xiao T, Li X, Lei W, Lu B, Liu Z, Zhai J.
    J Colloid Interface Sci; 2024 Nov 01; 673():365-372. PubMed ID: 38878371
    [Abstract] [Full Text] [Related]

  • 8. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS, Preet A, Lin TY, Lin TE.
    Molecules; 2021 Sep 08; 26(18):. PubMed ID: 34576940
    [Abstract] [Full Text] [Related]

  • 9. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges.
    Liu X, Li X, Chu X, Zhang B, Zhang J, Hambsch M, Mannsfeld SCB, Borrelli M, Löffler M, Pohl D, Liu Y, Zhang Z, Feng X.
    Adv Mater; 2024 May 08; 36(18):e2310791. PubMed ID: 38299804
    [Abstract] [Full Text] [Related]

  • 10. Bioinspired Ti3 C2 Tx MXene-Based Ionic Diode Membrane for High-Efficient Osmotic Energy Conversion.
    Ding L, Zheng M, Xiao D, Zhao Z, Xue J, Zhang S, Caro J, Wang H.
    Angew Chem Int Ed Engl; 2022 Oct 10; 61(41):e202206152. PubMed ID: 35768337
    [Abstract] [Full Text] [Related]

  • 11. Oppositely Charged Ti3 C2 Tx MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting.
    Ding L, Xiao D, Lu Z, Deng J, Wei Y, Caro J, Wang H.
    Angew Chem Int Ed Engl; 2020 May 25; 59(22):8720-8726. PubMed ID: 31950586
    [Abstract] [Full Text] [Related]

  • 12. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting.
    Zhou S, Hu Y, Xin W, Fu L, Lin X, Yang L, Hou S, Kong XY, Jiang L, Wen L.
    Adv Mater; 2023 Feb 25; 35(6):e2208640. PubMed ID: 36457170
    [Abstract] [Full Text] [Related]

  • 13. High-performance silk-based hybrid membranes employed for osmotic energy conversion.
    Xin W, Zhang Z, Huang X, Hu Y, Zhou T, Zhu C, Kong XY, Jiang L, Wen L.
    Nat Commun; 2019 Aug 28; 10(1):3876. PubMed ID: 31462636
    [Abstract] [Full Text] [Related]

  • 14. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting.
    Bang KR, Kwon C, Lee H, Kim S, Cho ES.
    ACS Nano; 2023 Jun 13; 17(11):10000-10009. PubMed ID: 37196224
    [Abstract] [Full Text] [Related]

  • 15. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S, Sun Z, Ahmad M, Fu W, Gao Z.
    Int J Biol Macromol; 2023 Dec 31; 253(Pt 1):126608. PubMed ID: 37652325
    [Abstract] [Full Text] [Related]

  • 16. Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices.
    Fu L, Wang Y, Jiang J, Lu B, Zhai J.
    ACS Appl Mater Interfaces; 2021 Jul 28; 13(29):35197-35206. PubMed ID: 34266231
    [Abstract] [Full Text] [Related]

  • 17. Extreme Ion-Transport Inorganic 2D Membranes for Nanofluidic Applications.
    Kim S, Choi H, Kim B, Lim G, Kim T, Lee M, Ra H, Yeom J, Kim M, Kim E, Hwang J, Lee JS, Shim W.
    Adv Mater; 2023 Oct 28; 35(43):e2206354. PubMed ID: 36112951
    [Abstract] [Full Text] [Related]

  • 18. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH2 Metal-Organic Framework Based Composite Membrane.
    Yao L, Li Q, Pan S, Cheng J, Liu X.
    Front Bioeng Biotechnol; 2022 Oct 28; 10():901507. PubMed ID: 35528210
    [Abstract] [Full Text] [Related]

  • 19. Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting.
    Yan PP, Chen XC, Liang ZX, Fang YP, Yao J, Lu CX, Cai Y, Jiang L.
    Small; 2023 Jan 28; 19(4):e2205003. PubMed ID: 36424182
    [Abstract] [Full Text] [Related]

  • 20. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting.
    Yang Y, Zhou S, Lv Z, Hung CT, Zhao Z, Zhao T, Chao D, Kong B, Zhao D.
    J Am Chem Soc; 2024 Jul 17; 146(28):19580-19589. PubMed ID: 38977375
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.