These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 34734615

  • 1. The mechanism of delaying starch digestion by luteolin.
    Zhao Y, Wang M, Zhang J, Xiong C, Huang G.
    Food Funct; 2021 Nov 29; 12(23):11862-11871. PubMed ID: 34734615
    [Abstract] [Full Text] [Related]

  • 2. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch.
    Jiang C, Chen Y, Ye X, Wang L, Shao J, Jing H, Jiang C, Wang H, Ma C.
    Int J Biol Macromol; 2021 Mar 01; 172():503-514. PubMed ID: 33454330
    [Abstract] [Full Text] [Related]

  • 3. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity.
    Sun L, Gidley MJ, Warren FJ.
    Food Chem; 2018 Aug 30; 258():164-173. PubMed ID: 29655719
    [Abstract] [Full Text] [Related]

  • 4. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion.
    Miao M, Jiang B, Jiang H, Zhang T, Li X.
    Food Chem; 2015 Nov 01; 186():20-5. PubMed ID: 25976786
    [Abstract] [Full Text] [Related]

  • 5. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms.
    Yang JP, He H, Lu YH.
    J Agric Food Chem; 2014 Aug 06; 62(31):7760-70. PubMed ID: 25019533
    [Abstract] [Full Text] [Related]

  • 6. α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking.
    Yan J, Zhang G, Pan J, Wang Y.
    Int J Biol Macromol; 2014 Mar 06; 64():213-23. PubMed ID: 24333230
    [Abstract] [Full Text] [Related]

  • 7. Blue honeysuckle extracts retarded starch digestion by inhibiting glycosidases and changing the starch structure.
    Zhang X, Rehman RU, Wang S, Ji Y, Li J, Liu S, Wang H.
    Food Funct; 2022 Jun 06; 13(11):6072-6088. PubMed ID: 35550649
    [Abstract] [Full Text] [Related]

  • 8. Research on the Influences of Five Food-Borne Polyphenols on In Vitro Slow Starch Digestion and the Mechanism of Action.
    Ren S, Li K, Liu Z.
    J Agric Food Chem; 2019 Aug 07; 67(31):8617-8625. PubMed ID: 31293160
    [Abstract] [Full Text] [Related]

  • 9. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content.
    Ji N, Liu C, Li M, Sun Q, Xiong L.
    Food Chem; 2018 Apr 15; 245():481-487. PubMed ID: 29287399
    [Abstract] [Full Text] [Related]

  • 10. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase.
    Zheng Y, Tian J, Yang W, Chen S, Liu D, Fang H, Zhang H, Ye X.
    Food Chem; 2020 Jul 01; 317():126346. PubMed ID: 32070843
    [Abstract] [Full Text] [Related]

  • 11. Insoluble dietary fiber from wheat bran retards starch digestion by reducing the activity of alpha-amylase.
    He T, Zhang X, Zhao L, Zou J, Qiu R, Liu X, Hu Z, Wang K.
    Food Chem; 2023 Nov 15; 426():136624. PubMed ID: 37356242
    [Abstract] [Full Text] [Related]

  • 12. Lysozyme-luteolin binding: molecular insights into the complexation process and the inhibitory effects of luteolin towards protein modification.
    Das S, Pahari S, Sarmah S, Rohman MA, Paul D, Jana M, Singha Roy A.
    Phys Chem Chem Phys; 2019 Jun 21; 21(23):12649-12666. PubMed ID: 31157335
    [Abstract] [Full Text] [Related]

  • 13. The inhibition mechanism of luteolin on peroxidase based on multispectroscopic techniques.
    Li F, Fu Y, Yang H, Tang Y.
    Int J Biol Macromol; 2021 Jan 01; 166():1072-1081. PubMed ID: 33157143
    [Abstract] [Full Text] [Related]

  • 14. In vitro inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles.
    Jiang S, Li M, Chang R, Xiong L, Sun Q.
    Food Funct; 2018 Jan 24; 9(1):355-363. PubMed ID: 29206258
    [Abstract] [Full Text] [Related]

  • 15. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry.
    Sun L, Gidley MJ, Warren FJ.
    Mol Nutr Food Res; 2017 Oct 24; 61(10):. PubMed ID: 28618113
    [Abstract] [Full Text] [Related]

  • 16. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics.
    D'Costa AS, Bordenave N.
    Food Chem; 2021 Mar 30; 341(Pt 2):128256. PubMed ID: 33035827
    [Abstract] [Full Text] [Related]

  • 17. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic α-amylase.
    Wang M, Shi J, Wang L, Hu Y, Ye X, Liu D, Chen J.
    Int J Biol Macromol; 2018 Dec 30; 120(Pt B):2589-2596. PubMed ID: 30195612
    [Abstract] [Full Text] [Related]

  • 18. Investigation the interaction between procyanidin dimer and α-amylase: Spectroscopic analyses and molecular docking simulation.
    Dai T, Chen J, Li Q, Li P, Hu P, Liu C, Li T.
    Int J Biol Macromol; 2018 Jul 01; 113():427-433. PubMed ID: 29408006
    [Abstract] [Full Text] [Related]

  • 19. Water-soluble vitamins for controlling starch digestion: Conformational scrambling and inhibition mechanism of human pancreatic α-amylase by ascorbic acid and folic acid.
    Borah PK, Sarkar A, Duary RK.
    Food Chem; 2019 Aug 01; 288():395-404. PubMed ID: 30902310
    [Abstract] [Full Text] [Related]

  • 20. The Mechanisms of Alpha-Amylase Inhibition by Flavan-3-Ols and the Possible Impacts of Drinking Green Tea on Starch Digestion.
    Desseaux V, Stocker P, Brouant P, Ajandouz EH.
    J Food Sci; 2018 Nov 01; 83(11):2858-2865. PubMed ID: 30289967
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.