These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 34738507

  • 1. Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing.
    Sheng L, Li M, Zheng S, Qi J.
    J Biomater Appl; 2022 Feb; 36(7):1173-1187. PubMed ID: 34738507
    [Abstract] [Full Text] [Related]

  • 2. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
    Zhang X, Yan Z, Guan G, Lu Z, Yan S, Du A, Wang L, Li Q.
    J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703
    [Abstract] [Full Text] [Related]

  • 3. Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate.
    Shen Z, Cao Y, Li M, Yan Y, Cheng R, Zhao Y, Shao Q, Wang J, Sang S.
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112360. PubMed ID: 34579879
    [Abstract] [Full Text] [Related]

  • 4. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion.
    Peter M, Singh A, Mohankumar K, Jeenger R, Joge PA, Gatne MM, Tayalia P.
    ACS Appl Bio Mater; 2019 Feb 18; 2(2):916-929. PubMed ID: 35016295
    [Abstract] [Full Text] [Related]

  • 5. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X, Tenaglio S, Esworthy T, Hann SY, Cui H, Webster TJ, Fenniri H, Zhang LG.
    ACS Appl Mater Interfaces; 2020 Jul 22; 12(29):33219-33228. PubMed ID: 32603082
    [Abstract] [Full Text] [Related]

  • 6. 3D-Printed GelMA/PEGDA/F127DA Scaffolds for Bone Regeneration.
    Gao J, Li M, Cheng J, Liu X, Liu Z, Liu J, Tang P.
    J Funct Biomater; 2023 Feb 09; 14(2):. PubMed ID: 36826895
    [Abstract] [Full Text] [Related]

  • 7. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration.
    He B, Wang J, Xie M, Xu M, Zhang Y, Hao H, Xing X, Lu W, Han Q, Liu W.
    Bioact Mater; 2022 Nov 09; 17():234-247. PubMed ID: 35386466
    [Abstract] [Full Text] [Related]

  • 8. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration.
    Rajabi M, Cabral JD, Saunderson S, Ali MA.
    J Biomed Mater Res A; 2023 Sep 09; 111(9):1468-1481. PubMed ID: 37066870
    [Abstract] [Full Text] [Related]

  • 9. A vertical additive-lathe printing system for the fabrication of tubular constructs using gelatin methacryloyl hydrogel.
    Fazal F, Melchels FPW, McCormack A, Silva AF, Callanan A, Koutsos V, Radacsi N.
    J Mech Behav Biomed Mater; 2023 Mar 09; 139():105665. PubMed ID: 36640542
    [Abstract] [Full Text] [Related]

  • 10. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L, Mehta R, Cao C, Theus A, Tomov M, Zhu N, Weeks ER, Bauser-Heaton H, Serpooshan V.
    ACS Appl Mater Interfaces; 2020 Oct 07; 12(40):44563-44577. PubMed ID: 32966746
    [Abstract] [Full Text] [Related]

  • 11. A GelMA-PEGDA-nHA Composite Hydrogel for Bone Tissue Engineering.
    Wang Y, Cao X, Ma M, Lu W, Zhang B, Guo Y.
    Materials (Basel); 2020 Aug 24; 13(17):. PubMed ID: 32847000
    [Abstract] [Full Text] [Related]

  • 12. Gelatine-based drug-eluting bandage contact lenses: Effect of PEGDA concentration and manufacturing technique.
    Zidan G, Greene CA, Etxabide A, Rupenthal ID, Seyfoddin A.
    Int J Pharm; 2021 Apr 15; 599():120452. PubMed ID: 33676990
    [Abstract] [Full Text] [Related]

  • 13. Novel 3D-printing bilayer GelMA-based hydrogel containing BP,β-TCP and exosomes for cartilage-bone integrated repair.
    Sun T, Feng Z, He W, Li C, Han S, Li Z, Guo R.
    Biofabrication; 2023 Oct 31; 16(1):. PubMed ID: 37857284
    [Abstract] [Full Text] [Related]

  • 14. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H, Sakthivel K, Mohamed MGA, Boras E, Shin SR, Kim K.
    Macromol Biosci; 2021 Jan 31; 21(1):e2000317. PubMed ID: 33043610
    [Abstract] [Full Text] [Related]

  • 15. 3D light-curing printing to construct versatile octopus-bionic patches.
    Li W, Hu X, Liu H, Tian J, Li L, Luo B, Zhou C, Lu L.
    J Mater Chem B; 2023 Jun 07; 11(22):5010-5020. PubMed ID: 37221914
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. 3D-Bioprinted Gelatin Methacryloyl-Strontium-Doped Hydroxyapatite Composite Hydrogels Scaffolds for Bone Tissue Regeneration.
    Codrea CI, Baykara D, Mitran RA, Koyuncu ACÇ, Gunduz O, Ficai A.
    Polymers (Basel); 2024 Jul 06; 16(13):. PubMed ID: 39000787
    [Abstract] [Full Text] [Related]

  • 18. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z, Kumar H, Tian Z, Jin X, Holzman JF, Menard F, Kim K.
    ACS Appl Mater Interfaces; 2018 Aug 15; 10(32):26859-26869. PubMed ID: 30024722
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Visible light-induced 3D bioprinted injectable scaffold for minimally invasive tissue regeneration.
    Tilton M, Camilleri ET, Astudillo Potes MD, Gaihre B, Liu X, Lucien F, Elder BD, Lu L.
    Biomater Adv; 2023 Oct 15; 153():213539. PubMed ID: 37429047
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.