These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 34748320
1. A Remote Secondary Binding Pocket Promotes Heteromultivalent Targeting of DC-SIGN. Wawrzinek R, Wamhoff EC, Lefebre J, Rentzsch M, Bachem G, Domeniconi G, Schulze J, Fuchsberger FF, Zhang H, Modenutti C, Schnirch L, Marti MA, Schwardt O, Bräutigam M, Guberman M, Hauck D, Seeberger PH, Seitz O, Titz A, Ernst B, Rademacher C. J Am Chem Soc; 2021 Nov 17; 143(45):18977-18988. PubMed ID: 34748320 [Abstract] [Full Text] [Related]
2. Selective targeting of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) with mannose-based glycomimetics: synthesis and interaction studies of bis(benzylamide) derivatives of a pseudomannobioside. Varga N, Sutkeviciute I, Guzzi C, McGeagh J, Petit-Haertlein I, Gugliotta S, Weiser J, Angulo J, Fieschi F, Bernardi A. Chemistry; 2013 Apr 08; 19(15):4786-97. PubMed ID: 23417900 [Abstract] [Full Text] [Related]
3. Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin. Holla A, Skerra A. Protein Eng Des Sel; 2011 Sep 08; 24(9):659-69. PubMed ID: 21540232 [Abstract] [Full Text] [Related]
4. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. Fehres CM, Kalay H, Bruijns SC, Musaafir SA, Ambrosini M, van Bloois L, van Vliet SJ, Storm G, Garcia-Vallejo JJ, van Kooyk Y. J Control Release; 2015 Apr 10; 203():67-76. PubMed ID: 25656175 [Abstract] [Full Text] [Related]
5. Monovalent mannose-based DC-SIGN antagonists: targeting the hydrophobic groove of the receptor. Tomašić T, Hajšek D, Švajger U, Luzar J, Obermajer N, Petit-Haertlein I, Fieschi F, Anderluh M. Eur J Med Chem; 2014 Mar 21; 75():308-26. PubMed ID: 24556146 [Abstract] [Full Text] [Related]
6. Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. Porkolab V, Chabrol E, Varga N, Ordanini S, Sutkevičiu Tė I, Thépaut M, García-Jiménez MJ, Girard E, Nieto PM, Bernardi A, Fieschi F. ACS Chem Biol; 2018 Mar 16; 13(3):600-608. PubMed ID: 29272097 [Abstract] [Full Text] [Related]
7. CellFy: A Cell-Based Fragment Screen against C-Type Lectins. Schulze J, Baukmann H, Wawrzinek R, Fuchsberger FF, Specker E, Aretz J, Nazaré M, Rademacher C. ACS Chem Biol; 2018 Dec 21; 13(12):3229-3235. PubMed ID: 30480432 [Abstract] [Full Text] [Related]
8. Identification of the mycobacterial carbohydrate structure that binds the C-type lectins DC-SIGN, L-SIGN and SIGNR1. Koppel EA, Ludwig IS, Hernandez MS, Lowary TL, Gadikota RR, Tuzikov AB, Vandenbroucke-Grauls CM, van Kooyk Y, Appelmelk BJ, Geijtenbeek TB. Immunobiology; 2004 Dec 21; 209(1-2):117-27. PubMed ID: 15481146 [Abstract] [Full Text] [Related]
9. Structure of a glycomimetic ligand in the carbohydrate recognition domain of C-type lectin DC-SIGN. Structural requirements for selectivity and ligand design. Thépaut M, Guzzi C, Sutkeviciute I, Sattin S, Ribeiro-Viana R, Varga N, Chabrol E, Rojo J, Bernardi A, Angulo J, Nieto PM, Fieschi F. J Am Chem Soc; 2013 Feb 20; 135(7):2518-29. PubMed ID: 23360500 [Abstract] [Full Text] [Related]
10. Molecular basis of the differences in binding properties of the highly related C-type lectins DC-SIGN and L-SIGN to Lewis X trisaccharide and Schistosoma mansoni egg antigens. Van Liempt E, Imberty A, Bank CM, Van Vliet SJ, Van Kooyk Y, Geijtenbeek TB, Van Die I. J Biol Chem; 2004 Aug 06; 279(32):33161-7. PubMed ID: 15184372 [Abstract] [Full Text] [Related]
11. The Human Glycoprotein Salivary Agglutinin Inhibits the Interaction of DC-SIGN and Langerin with Oral Micro-Organisms. Boks MA, Gunput ST, Kosten I, Gibbs S, van Vliet SJ, Ligtenberg AJ, van Kooyk Y. J Innate Immun; 2016 Aug 06; 8(4):350-61. PubMed ID: 27082983 [Abstract] [Full Text] [Related]
12. Glyco-Dendrimers as Intradermal Anti-Tumor Vaccine Targeting Multiple Skin DC Subsets. Duinkerken S, Horrevorts SK, Kalay H, Ambrosini M, Rutte L, de Gruijl TD, Garcia-Vallejo JJ, van Kooyk Y. Theranostics; 2019 Aug 06; 9(20):5797-5809. PubMed ID: 31534520 [Abstract] [Full Text] [Related]
13. The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Chatwell L, Holla A, Kaufer BB, Skerra A. Mol Immunol; 2008 Apr 06; 45(7):1981-94. PubMed ID: 18061677 [Abstract] [Full Text] [Related]
15. Sugar and spice: viral envelope-DC-SIGN interactions in HIV pathogenesis. Su SV, Gurney KB, Lee B. Curr HIV Res; 2003 Jan 06; 1(1):87-99. PubMed ID: 15043214 [Abstract] [Full Text] [Related]
17. DC-SIGN mediates binding of dendritic cells to authentic pseudo-LewisY glycolipids of Schistosoma mansoni cercariae, the first parasite-specific ligand of DC-SIGN. Meyer S, van Liempt E, Imberty A, van Kooyk Y, Geyer H, Geyer R, van Die I. J Biol Chem; 2005 Nov 11; 280(45):37349-59. PubMed ID: 16155001 [Abstract] [Full Text] [Related]
19. Noncarbohydrate glycomimetics and glycoprotein surrogates as DC-SIGN antagonists and agonists. Prost LR, Grim JC, Tonelli M, Kiessling LL. ACS Chem Biol; 2012 Sep 21; 7(9):1603-8. PubMed ID: 22747463 [Abstract] [Full Text] [Related]
20. Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN. Jug G, Anderluh M, Tomašič T. J Mol Model; 2015 Jun 21; 21(6):164. PubMed ID: 26040678 [Abstract] [Full Text] [Related] Page: [Next] [New Search]