These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 34757719

  • 1. Silicon Surface Passivation for Silicon-Colloidal Quantum Dot Heterojunction Photodetectors.
    Xu Q, Cheong IT, Meng L, Veinot JGC, Wang X.
    ACS Nano; 2021 Nov 23; 15(11):18429-18436. PubMed ID: 34757719
    [Abstract] [Full Text] [Related]

  • 2. Inverted Si:PbS Colloidal Quantum Dot Heterojunction-Based Infrared Photodetector.
    Xu K, Xiao X, Zhou W, Jiang X, Wei Q, Chen H, Deng Z, Huang J, Chen B, Ning Z.
    ACS Appl Mater Interfaces; 2020 Apr 01; 12(13):15414-15421. PubMed ID: 32159327
    [Abstract] [Full Text] [Related]

  • 3. Transient Measurements and Simulations Correlate Exchange Ligand Concentration and Trap States in Colloidal Quantum Dot Photodetectors.
    Parmar DH, Rehl B, Atan O, Hoogland S, Sargent EH.
    ACS Appl Mater Interfaces; 2023 Dec 27; 15(51):59931-59938. PubMed ID: 38085700
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing.
    Xu Q, Meng L, Zeng T, Sinha K, Dick C, Wang X.
    Opt Lett; 2019 Jan 15; 44(2):463-466. PubMed ID: 30644926
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors.
    Biondi M, Choi MJ, Wang Z, Wei M, Lee S, Choubisa H, Sagar LK, Sun B, Baek SW, Chen B, Todorović P, Najarian AM, Sedighian Rasouli A, Nam DH, Vafaie M, Li YC, Bertens K, Hoogland S, Voznyy O, García de Arquer FP, Sargent EH.
    Adv Mater; 2021 Aug 15; 33(33):e2101056. PubMed ID: 34245178
    [Abstract] [Full Text] [Related]

  • 9. Carbon Nanotube Transistor with Colloidal Quantum Dot Photosensitive Gate for Ultrahigh External Quantum Efficiency Photodetector.
    Han J, Huang K, Su X, Xiao X, Gong X, Wang H, Cao J.
    ACS Nano; 2023 May 23; 17(10):9510-9520. PubMed ID: 37166009
    [Abstract] [Full Text] [Related]

  • 10. Sequential Co-Passivation in InAs Colloidal Quantum Dot Solids Enables Efficient Near-Infrared Photodetectors.
    Xia P, Sun B, Biondi M, Xu J, Atan O, Imran M, Hassan Y, Liu Y, Pina JM, Najarian AM, Grater L, Bertens K, Sagar LK, Anwar H, Choi MJ, Zhang Y, Hasham M, García de Arquer FP, Hoogland S, Wilson MWB, Sargent EH.
    Adv Mater; 2023 Jul 23; 35(28):e2301842. PubMed ID: 37170473
    [Abstract] [Full Text] [Related]

  • 11. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density.
    Sun B, Vafaie M, Levina L, Wei M, Dong Y, Gao Y, Kung HT, Biondi M, Proppe AH, Chen B, Choi MJ, Sagar LK, Voznyy O, Kelley SO, Laquai F, Lu ZH, Hoogland S, García de Arquer FP, Sargent EH.
    Nano Lett; 2020 May 13; 20(5):3694-3702. PubMed ID: 32227970
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors.
    Zhang Y, Vafaie M, Xu J, Pina JM, Xia P, Najarian AM, Atan O, Imran M, Xie K, Hoogland S, Sargent EH.
    Adv Mater; 2022 Nov 13; 34(47):e2206884. PubMed ID: 36134538
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Fast Near-Infrared Photodetection Using III-V Colloidal Quantum Dots.
    Sun B, Najarian AM, Sagar LK, Biondi M, Choi MJ, Li X, Levina L, Baek SW, Zheng C, Lee S, Kirmani AR, Sabatini R, Abed J, Liu M, Vafaie M, Li P, Richter LJ, Voznyy O, Chekini M, Lu ZH, García de Arquer FP, Sargent EH.
    Adv Mater; 2022 Aug 13; 34(33):e2203039. PubMed ID: 35767306
    [Abstract] [Full Text] [Related]

  • 17. Dicarboxylic Acid-Assisted Surface Oxide Removal and Passivation of Indium Antimonide Colloidal Quantum Dots for Short-Wave Infrared Photodetectors.
    Zhang Y, Xia P, Rehl B, Parmar DH, Choi D, Imran M, Chen Y, Liu Y, Vafaie M, Li C, Atan O, Pina JM, Paritmongkol W, Levina L, Voznyy O, Hoogland S, Sargent EH.
    Angew Chem Int Ed Engl; 2024 Feb 19; 63(8):e202316733. PubMed ID: 38170453
    [Abstract] [Full Text] [Related]

  • 18. Hybrid Surface Passivation for Retrieving Charge Collection Efficiency of Colloidal Quantum Dot Photovoltaics.
    Yang J, Oh JT, Kim M, Song H, Boukhvalov DW, Lee SH, Choi H, Yi W.
    ACS Appl Mater Interfaces; 2020 Sep 30; 12(39):43576-43585. PubMed ID: 32876435
    [Abstract] [Full Text] [Related]

  • 19. Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors.
    Hao Q, Ma H, Xing X, Tang X, Wei Z, Zhao X, Chen M.
    Materials (Basel); 2023 Nov 24; 16(23):. PubMed ID: 38068065
    [Abstract] [Full Text] [Related]

  • 20. Silver Telluride Colloidal Quantum Dot Solid for Fast Extended Shortwave Infrared Photodetector.
    Ahn Y, Eom SY, Kim G, Lee JH, Kim B, Kim D, Si MJ, Yang M, Jung Y, Kim BS, Chung YJ, Jeong KS, Baek SW.
    Adv Sci (Weinh); 2024 Nov 24; 11(44):e2407453. PubMed ID: 39373718
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.