These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 34761807

  • 21. Fatigability and recovery of arm muscles with advanced age for dynamic and isometric contractions.
    Yoon T, Schlinder-Delap B, Hunter SK.
    Exp Gerontol; 2013 Feb; 48(2):259-68. PubMed ID: 23103238
    [Abstract] [Full Text] [Related]

  • 22. Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults.
    Yoon T, Schlinder-Delap B, Keller ML, Hunter SK.
    J Appl Physiol (1985); 2012 Mar; 112(5):849-58. PubMed ID: 22174405
    [Abstract] [Full Text] [Related]

  • 23. Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii.
    Pearcey GE, Bradbury-Squires DJ, Monks M, Philpott D, Power KE, Button DC.
    Appl Physiol Nutr Metab; 2016 Feb; 41(2):199-209. PubMed ID: 26799694
    [Abstract] [Full Text] [Related]

  • 24. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans.
    Seifert T, Petersen NC.
    Acta Physiol (Oxf); 2010 Jul 01; 199(3):317-26. PubMed ID: 20136794
    [Abstract] [Full Text] [Related]

  • 25. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation.
    Bowtell JL, Avenell G, Hunter SP, Mileva KN.
    PLoS One; 2013 Jul 01; 8(10):e77004. PubMed ID: 24098574
    [Abstract] [Full Text] [Related]

  • 26. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G, Taylor JL, Butler JE, Martin PG, Gorman RB, Gandevia SC.
    J Appl Physiol (1985); 2007 May 01; 102(5):1756-66. PubMed ID: 17218428
    [Abstract] [Full Text] [Related]

  • 27. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL.
    Exp Physiol; 2016 Dec 01; 101(12):1552-1564. PubMed ID: 27652591
    [Abstract] [Full Text] [Related]

  • 28. Sex-related differences in corticospinal excitability outcome measures of the biceps brachii during a submaximal elbow flexor contraction.
    Olarogba OB, Lockyer EJ, Antolinez AK, Button DC.
    Physiol Rep; 2024 Aug 01; 12(15):e16102. PubMed ID: 39095333
    [Abstract] [Full Text] [Related]

  • 29. The short-term recovery of corticomotor responses in elbow flexors.
    Aboodarda SJ, Fan S, Coates K, Millet GY.
    BMC Neurosci; 2019 Mar 14; 20(1):9. PubMed ID: 30871475
    [Abstract] [Full Text] [Related]

  • 30. Responses of human motoneurons to corticospinal stimulation during maximal voluntary contractions and ischemia.
    Butler JE, Taylor JL, Gandevia SC.
    J Neurosci; 2003 Nov 12; 23(32):10224-30. PubMed ID: 14614080
    [Abstract] [Full Text] [Related]

  • 31. Supraspinal, spinal, and motor unit adjustments to fatiguing isometric contractions of the knee extensors at low and high submaximal intensities in males.
    Angius L, Del Vecchio A, Goodall S, Thomas K, Ansdell P, Atkinson E, Farina D, Howatson G.
    J Appl Physiol (1985); 2024 Jun 01; 136(6):1546-1558. PubMed ID: 38695356
    [Abstract] [Full Text] [Related]

  • 32. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles.
    Todd G, Petersen NT, Taylor JL, Gandevia SC.
    Exp Brain Res; 2003 Jun 01; 150(3):308-13. PubMed ID: 12677313
    [Abstract] [Full Text] [Related]

  • 33. Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles.
    Smith JL, Martin PG, Gandevia SC, Taylor JL.
    J Appl Physiol (1985); 2007 Aug 01; 103(2):560-8. PubMed ID: 17463302
    [Abstract] [Full Text] [Related]

  • 34. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G, Taylor JL, Gandevia SC.
    J Physiol; 2003 Sep 01; 551(Pt 2):661-71. PubMed ID: 12909682
    [Abstract] [Full Text] [Related]

  • 35. Increased corticospinal inhibition following brief maximal and submaximal contractions in humans.
    Paish AD, Zero AM, McNeil CJ, Rice CL.
    J Appl Physiol (1985); 2023 Oct 01; 135(4):805-811. PubMed ID: 37616335
    [Abstract] [Full Text] [Related]

  • 36. Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males.
    Aboodarda SJ, Copithorne DB, Pearcey GEP, Button DC, Power KE.
    Neurosci Lett; 2015 Oct 21; 607():66-71. PubMed ID: 26415709
    [Abstract] [Full Text] [Related]

  • 37. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans.
    Lévénez M, Garland SJ, Klass M, Duchateau J.
    J Neurophysiol; 2008 Feb 21; 99(2):554-63. PubMed ID: 18046002
    [Abstract] [Full Text] [Related]

  • 38. Supraspinal fatigue is similar in men and women for a low-force fatiguing contraction.
    Keller ML, Pruse J, Yoon T, Schlinder-Delap B, Harkins A, Hunter SK.
    Med Sci Sports Exerc; 2011 Oct 21; 43(10):1873-83. PubMed ID: 21364478
    [Abstract] [Full Text] [Related]

  • 39. Effect of blood flow occlusion on corticospinal excitability during sustained low-intensity isometric elbow flexion.
    Copithorne DB, Rice CL, McNeil CJ.
    J Neurophysiol; 2020 Mar 01; 123(3):1113-1119. PubMed ID: 31995434
    [Abstract] [Full Text] [Related]

  • 40. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions.
    Löscher WN, Nordlund MM.
    Muscle Nerve; 2002 Jun 01; 25(6):864-72. PubMed ID: 12115976
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.