These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 34762953
1. Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete. Zhao J, Csetenyi L, Gadd GM. Sci Total Environ; 2022 Apr 10; 816():151501. PubMed ID: 34762953 [Abstract] [Full Text] [Related]
2. CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Li Q, Csetenyi L, Paton GI, Gadd GM. Environ Microbiol; 2015 Aug 10; 17(8):3082-97. PubMed ID: 26119362 [Abstract] [Full Text] [Related]
3. Removal of Soluble Strontium via Incorporation into Biogenic Carbonate Minerals by Halophilic Bacterium Bacillus sp. Strain TK2d in a Highly Saline Solution. Horiike T, Dotsuta Y, Nakano Y, Ochiai A, Utsunomiya S, Ohnuki T, Yamashita M. Appl Environ Microbiol; 2017 Oct 15; 83(20):. PubMed ID: 28802269 [Abstract] [Full Text] [Related]
4. Biomineralization of metal carbonates by Neurospora crassa. Li Q, Csetenyi L, Gadd GM. Environ Sci Technol; 2014 Dec 16; 48(24):14409-16. PubMed ID: 25423300 [Abstract] [Full Text] [Related]
5. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Achal V, Pan X, Zhang D. Chemosphere; 2012 Oct 16; 89(6):764-8. PubMed ID: 22850277 [Abstract] [Full Text] [Related]
6. Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation. Zhu X, Wang J, De Belie N, Boon N. Appl Microbiol Biotechnol; 2019 Nov 16; 103(21-22):8825-8838. PubMed ID: 31637492 [Abstract] [Full Text] [Related]
7. Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks. Choi S, Park S, Park M, Kim Y, Lee KM, Lee OM, Son HJ. Molecules; 2021 May 17; 26(10):. PubMed ID: 34067627 [Abstract] [Full Text] [Related]
8. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Kumari D, Qian XY, Pan X, Achal V, Li Q, Gadd GM. Adv Appl Microbiol; 2016 May 17; 94():79-108. PubMed ID: 26917242 [Abstract] [Full Text] [Related]
9. Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284. Rahmaninezhad SA, Houshmand M, Sadighi A, Ahmari K, Kamireddi D, Street RM, Farnam YA, Schauer CL, Najafi AR, Sales CM. J Biosci Bioeng; 2024 Jul 17; 138(1):63-72. PubMed ID: 38614831 [Abstract] [Full Text] [Related]
10. Conditions for CaCO3 Biomineralization by Trichoderma Reesei with the Perspective of Developing Fungi-Mediated Self-Healing Concrete. Van Wylick A, Rahier H, De Laet L, Peeters E. Glob Chall; 2024 Jan 17; 8(1):2300160. PubMed ID: 38223894 [Abstract] [Full Text] [Related]
11. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries. Marín S, Cabestrero O, Demergasso C, Olivares S, Zetola V, Vera M. Acta Biomater; 2021 Jan 15; 120():304-317. PubMed ID: 33212232 [Abstract] [Full Text] [Related]
12. Optimization of deposition process for a productive and cohesive bio-CaCO3 to repair concrete existing cracks. Gao R, Ma J, Liu G, Chen H, Wen J, Wang J. Appl Microbiol Biotechnol; 2023 Jun 15; 107(11):3479-3494. PubMed ID: 37115250 [Abstract] [Full Text] [Related]
13. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system. Lauchnor EG, Schultz LN, Bugni S, Mitchell AC, Cunningham AB, Gerlach R. Environ Sci Technol; 2013 Feb 05; 47(3):1557-64. PubMed ID: 23282003 [Abstract] [Full Text] [Related]
14. Strain Screening and Particle Formation: a Lysinibacillus boronitolerans for Self-Healing Concrete. Xu JM, Lu C, Wang WJ, Du ZY, Pan JJ, Cheng F, Wang YS, Liu ZQ, Zheng YG. Appl Environ Microbiol; 2022 Sep 22; 88(18):e0080422. PubMed ID: 36036598 [Abstract] [Full Text] [Related]
15. Lipid-mediated growth of SrCO3/CaCO3 hybrid films as bioactive coatings for Ti surfaces. Cruz MAE, Zanatta MBT, da Veiga MAMS, Ciancaglini P, Ramos AP. Mater Sci Eng C Mater Biol Appl; 2019 Jun 22; 99():762-769. PubMed ID: 30889751 [Abstract] [Full Text] [Related]
16. A synergetic biomineralization strategy for immobilizing strontium during calcification of the coccolithophore Emiliania huxleyi. Sun S, Liu M, Nie X, Dong F, Hu W, Tan D, Huo T. Environ Sci Pollut Res Int; 2018 Aug 22; 25(23):22446-22454. PubMed ID: 29368204 [Abstract] [Full Text] [Related]
17. Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete. Xu J, Wang X, Wang B. Appl Microbiol Biotechnol; 2018 Apr 22; 102(7):3121-3132. PubMed ID: 29455387 [Abstract] [Full Text] [Related]
18. Characterization of bio-adsorptive removal performance of strontium through ureolysis-mediated bio-mineralization. Kim H, Son HM, Lee HK. Chemosphere; 2022 Feb 22; 288(Pt 2):132586. PubMed ID: 34718026 [Abstract] [Full Text] [Related]
19. Characterization and applicability of novel alkali-tolerant carbonatogenic bacteria as environment-friendly bioconsolidants for management of concrete structures and soil erosion. Park G, Kim Y, Lee HH, Lee OM, Park J, Kim YJ, Lee KM, Heo MS, Son HJ. J Environ Manage; 2022 Nov 01; 321():115929. PubMed ID: 35985272 [Abstract] [Full Text] [Related]
20. Enhanced Strontium Removal through Microbially Induced Carbonate Precipitation by Indigenous Ureolytic Bacteria. White-Pettigrew M, Shaw S, Hughes L, Boothman C, Graham J, Abrahamsen-Mills L, Morris K, Lloyd JR. ACS Earth Space Chem; 2024 Mar 21; 8(3):483-498. PubMed ID: 38533191 [Abstract] [Full Text] [Related] Page: [Next] [New Search]