These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
419 related items for PubMed ID: 34763618
1. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting. Schmalz T, Colienne A, Bywater E, Fritzsche L, Gärtner C, Bellmann M, Reimer S, Ernst M. IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618 [Abstract] [Full Text] [Related]
2. In-Field Training of a Passive Back Exoskeleton Changes the Biomechanics of Logistic Workers. Schrøder Jakobsen L, Samani A, Desbrosses K, de Zee M, Madeleine P. IISE Trans Occup Ergon Hum Factors; 2024; 12(3):149-161. PubMed ID: 38869954 [Abstract] [Full Text] [Related]
3. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks. Madinei S, Nussbaum MA. J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578 [Abstract] [Full Text] [Related]
4. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X, Zheng L. IISE Trans Occup Ergon Hum Factors; 2021 Jan; 9(3-4):167-185. PubMed ID: 34254566 [Abstract] [Full Text] [Related]
5. Biomechanical evaluation of a new passive back support exoskeleton. Koopman AS, Näf M, Baltrusch SJ, Kingma I, Rodriguez-Guerrero C, Babič J, de Looze MP, van Dieën JH. J Biomech; 2020 May 22; 105():109795. PubMed ID: 32423541 [Abstract] [Full Text] [Related]
7. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures. van Sluijs RM, Wehrli M, Brunner A, Lambercy O. J Biomech; 2023 Mar 22; 149():111489. PubMed ID: 36806003 [Abstract] [Full Text] [Related]
8. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model. Tröster M, Budde S, Maufroy C, Andersen MS, Rasmussen J, Schneider U, Bauernhansl T. Int J Environ Res Public Health; 2022 Jul 25; 19(15):. PubMed ID: 35897411 [Abstract] [Full Text] [Related]
9. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models. Moya-Esteban A, Durandau G, van der Kooij H, Sartori M. J Biomech; 2023 Aug 25; 157():111727. PubMed ID: 37499430 [Abstract] [Full Text] [Related]
10. Biomechanical analysis of different back-supporting exoskeletons regarding musculoskeletal loading during lifting and holding. Johns J, Schultes I, Heinrich K, Potthast W, Glitsch U. J Biomech; 2024 May 25; 168():112125. PubMed ID: 38688184 [Abstract] [Full Text] [Related]
11. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. Koopman AS, Kingma I, de Looze MP, van Dieën JH. J Biomech; 2020 Mar 26; 102():109486. PubMed ID: 31718821 [Abstract] [Full Text] [Related]
12. The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting. Koopman AS, Toxiri S, Power V, Kingma I, van Dieën JH, Ortiz J, de Looze MP. J Biomech; 2019 Jun 25; 91():14-22. PubMed ID: 31122661 [Abstract] [Full Text] [Related]
13. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Baltrusch SJ, van Dieën JH, Bruijn SM, Koopman AS, van Bennekom CAM, Houdijk H. Ergonomics; 2019 Jul 25; 62(7):903-916. PubMed ID: 30929608 [Abstract] [Full Text] [Related]
14. Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support. van Sluijs R, Scholtysik T, Brunner A, Kuoni L, Bee D, Kos M, Bartenbach V, Lambercy O. Appl Ergon; 2024 Oct 25; 120():104332. PubMed ID: 38876001 [Abstract] [Full Text] [Related]
15. Effectiveness of Soft versus Rigid Back-Support Exoskeletons during a Lifting Task. Schwartz M, Theurel J, Desbrosses K. Int J Environ Res Public Health; 2021 Jul 29; 18(15):. PubMed ID: 34360352 [Abstract] [Full Text] [Related]
16. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height. van der Have A, Rossini M, Rodriguez-Guerrero C, Van Rossom S, Jonkers I. Appl Ergon; 2022 Sep 29; 103():103800. PubMed ID: 35598416 [Abstract] [Full Text] [Related]
17. Modeling the metabolic reductions of a passive back-support exoskeleton. Alemi MM, Simon AA, Geissinger J, Asbeck AT. J Appl Physiol (1985); 2022 Mar 01; 132(3):737-760. PubMed ID: 35023764 [Abstract] [Full Text] [Related]
18. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks. Schwartz M, Desbrosses K, Theurel J, Mornieux G. Int J Environ Res Public Health; 2023 Jul 28; 20(15):. PubMed ID: 37569010 [Abstract] [Full Text] [Related]
19. Model-Based Biomechanical Exoskeleton Concept Optimization for a Representative Lifting Task in Logistics. Schiebl J, Tröster M, Idoudi W, Gneiting E, Spies L, Maufroy C, Schneider U, Bauernhansl T. Int J Environ Res Public Health; 2022 Nov 23; 19(23):. PubMed ID: 36497613 [Abstract] [Full Text] [Related]
20. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review. Kermavnar T, de Vries AW, de Looze MP, O'Sullivan LW. Ergonomics; 2021 Jun 23; 64(6):685-711. PubMed ID: 33369518 [Abstract] [Full Text] [Related] Page: [Next] [New Search]