These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


284 related items for PubMed ID: 34770614

  • 1. MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method.
    Li M, Cai Z, Zhao J, Wang Y, Wang Y, Lu K.
    Sensors (Basel); 2021 Nov 02; 21(21):. PubMed ID: 34770614
    [Abstract] [Full Text] [Related]

  • 2. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J, Peng X, Wang H, Niu W, Zheng X.
    Sensors (Basel); 2020 Oct 01; 20(19):. PubMed ID: 33019747
    [Abstract] [Full Text] [Related]

  • 3. Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.
    Wang L, Jiang X, Wang D, Wang L, Tu Z, Ai J.
    Sensors (Basel); 2022 Nov 22; 22(23):. PubMed ID: 36501768
    [Abstract] [Full Text] [Related]

  • 4. Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking.
    Zhao J, Liu H, Sun J, Wu K, Cai Z, Ma Y, Wang Y.
    Biomimetics (Basel); 2022 Nov 11; 7(4):. PubMed ID: 36412725
    [Abstract] [Full Text] [Related]

  • 5. Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications.
    Lo LY, Yiu CH, Tang Y, Yang AS, Li B, Wen CY.
    Sensors (Basel); 2021 Nov 27; 21(23):. PubMed ID: 34883913
    [Abstract] [Full Text] [Related]

  • 6. Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV's Autonomous Motion Planning in Complex Unknown Environments.
    Hu Z, Wan K, Gao X, Zhai Y, Wang Q.
    Sensors (Basel); 2020 Mar 29; 20(7):. PubMed ID: 32235308
    [Abstract] [Full Text] [Related]

  • 7. Visual Servoing of a Moving Target by an Unmanned Aerial Vehicle.
    Chen CW, Hung HA, Yang PH, Cheng TH.
    Sensors (Basel); 2021 Aug 25; 21(17):. PubMed ID: 34502599
    [Abstract] [Full Text] [Related]

  • 8. Data-Efficient Deep Reinforcement Learning for Attitude Control of Fixed-Wing UAVs: Field Experiments.
    Bohn E, Coates EM, Reinhardt D, Johansen TA.
    IEEE Trans Neural Netw Learn Syst; 2024 Mar 25; 35(3):3168-3180. PubMed ID: 37053066
    [Abstract] [Full Text] [Related]

  • 9. Reinforcement Learning Based Topology Control for UAV Networks.
    Yoo T, Lee S, Yoo K, Kim H.
    Sensors (Basel); 2023 Jan 13; 23(2):. PubMed ID: 36679723
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH, Kim KW, Lee YW, Park KR.
    Sensors (Basel); 2017 Aug 30; 17(9):. PubMed ID: 28867775
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.