These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 34771327

  • 21. Harnessing the Synergetic Effects of Ag, Mn Dopants in Eco-Friendly Ultraviolet Selective Quantum Dots for Luminescent Solar Concentrators.
    Jin L, Hamzehpoor E, Selopal GS, Liu J, Kumar P, Benetti D, Tong X, Perepichka DF, Wang ZM, Rosei F.
    Small Methods; 2024 Mar 28; ():e2301695. PubMed ID: 38545996
    [Abstract] [Full Text] [Related]

  • 22. Aggregation-Induced Enhanced Red Emission Graphene Quantum Dots for Integrated Fabrication of Luminescent Solar Concentrators.
    Li J, Zhao H, Zhao X, Gong X.
    Nano Lett; 2024 Sep 18; 24(37):11722-11729. PubMed ID: 39248378
    [Abstract] [Full Text] [Related]

  • 23. Luminescent Solar Concentrators Based on Renewable Polyester Matrices.
    Geervliet TA, Gavrila I, Iasilli G, Picchioni F, Pucci A.
    Chem Asian J; 2019 Mar 15; 14(6):877-883. PubMed ID: 30549440
    [Abstract] [Full Text] [Related]

  • 24. Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission.
    van der Burgt JS, Needell DR, Veeken T, Polman A, Garnett EC, Atwater HA.
    ACS Appl Mater Interfaces; 2021 Sep 01; 13(34):40742-40753. PubMed ID: 34410098
    [Abstract] [Full Text] [Related]

  • 25. High-performance laminated luminescent solar concentrators based on colloidal carbon quantum dots.
    Zhao H, Liu G, Han G.
    Nanoscale Adv; 2019 Dec 03; 1(12):4888-4894. PubMed ID: 36133122
    [Abstract] [Full Text] [Related]

  • 26. Characterization and reduction of reabsorption losses in luminescent solar concentrators.
    Wilson LR, Rowan BC, Robertson N, Moudam O, Jones AC, Richards BS.
    Appl Opt; 2010 Mar 20; 49(9):1651-61. PubMed ID: 20300163
    [Abstract] [Full Text] [Related]

  • 27. Förster Resonance Energy Transfer in Luminescent Solar Concentrators.
    Zhang B, Lyu G, Kelly EA, Evans RC.
    Adv Sci (Weinh); 2022 Aug 20; 9(23):e2201160. PubMed ID: 35678107
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Improving power conversion efficiency in luminescent solar concentrators using nanoparticle fluorescence and scattering.
    Lu Q, Xu S, Shao H, Huang G, Xu J, Cui Y, Ban D, Wang C.
    Nanotechnology; 2020 Nov 06; 31(45):455205. PubMed ID: 32736367
    [Abstract] [Full Text] [Related]

  • 30. A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers.
    Gutierrez GD, Coropceanu I, Bawendi MG, Swager TM.
    Adv Mater; 2016 Jan 20; 28(3):497-501. PubMed ID: 26596854
    [Abstract] [Full Text] [Related]

  • 31. Luminescent solar concentrator efficiency versus edge solar cell coverage.
    Lu X, Zhou J, Jash M, Sychugov I.
    Opt Lett; 2023 Aug 15; 48(16):4197-4200. PubMed ID: 37581991
    [Abstract] [Full Text] [Related]

  • 32. Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots.
    Li C, Chen W, Wu D, Quan D, Zhou Z, Hao J, Qin J, Li Y, He Z, Wang K.
    Sci Rep; 2015 Dec 08; 5():17777. PubMed ID: 26642815
    [Abstract] [Full Text] [Related]

  • 33. Rapid optimization of large-scale luminescent solar concentrators: evaluation for adoption in the built environment.
    Merkx EPJ, Ten Kate OM, van der Kolk E.
    Opt Express; 2017 Jun 12; 25(12):A547-A563. PubMed ID: 28788837
    [Abstract] [Full Text] [Related]

  • 34. Orange/Red Benzo[1,2-b:4,5-b']dithiophene 1,1,5,5-Tetraoxide-Based Emitters for Luminescent Solar Concentrators: Effect of Structures on Fluorescence Properties and Device Performances.
    Bartolini M, Micheletti C, Picchi A, Coppola C, Sinicropi A, Di Donato M, Foggi P, Mordini A, Reginato G, Pucci A, Zani L, Calamante M.
    ACS Appl Energy Mater; 2023 May 08; 6(9):4862-4880. PubMed ID: 37181248
    [Abstract] [Full Text] [Related]

  • 35. Study of the Scattering Effect by SiO2 Nanoparticles, in a Luminescent Solar Concentrator Sensitized with Carbon Dots.
    Polché M, José Miguel BF, Guzmán González CA, González Contreras G, Romero Arellano VH.
    Nanomaterials (Basel); 2023 Sep 02; 13(17):. PubMed ID: 37686987
    [Abstract] [Full Text] [Related]

  • 36. Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins.
    Sadeghi S, Melikov R, Bahmani Jalali H, Karatum O, Srivastava SB, Conkar D, Firat-Karalar EN, Nizamoglu S.
    ACS Appl Mater Interfaces; 2019 Mar 06; 11(9):8710-8716. PubMed ID: 30777750
    [Abstract] [Full Text] [Related]

  • 37. Quantifying self-absorption losses in luminescent solar concentrators.
    Ten Kate OM, Hooning KM, van der Kolk E.
    Appl Opt; 2014 Aug 10; 53(23):5238-45. PubMed ID: 25320934
    [Abstract] [Full Text] [Related]

  • 38. Poly(methyl methacrylate) Films with High Concentrations of Silicon Quantum Dots for Visibly Transparent Luminescent Solar Concentrators.
    Hill SKE, Connell R, Held J, Peterson C, Francis L, Hillmyer MA, Ferry VE, Kortshagen U.
    ACS Appl Mater Interfaces; 2020 Jan 29; 12(4):4572-4578. PubMed ID: 31909959
    [Abstract] [Full Text] [Related]

  • 39. A Multistate Thermoresponsive Smart Window Based on a Multifunctional Luminescent Solar Concentrator.
    Chen Y, Ge F, Lai Y, Wang L, Zhao X, Wang R, Peng S, Wu XJ, Zhou Y.
    ACS Appl Mater Interfaces; 2024 Mar 20; 16(11):14072-14081. PubMed ID: 38442356
    [Abstract] [Full Text] [Related]

  • 40. Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators.
    Wilton SR, Fetterman MR, Low JJ, You G, Jiang Z, Xu J.
    Opt Express; 2014 Jan 13; 22 Suppl 1():A35-43. PubMed ID: 24921998
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.