These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Advancing investigation of automated vehicle crashes using text analytics of crash narratives and Bayesian analysis. Lee S, Arvin R, Khattak AJ. Accid Anal Prev; 2023 Mar; 181():106932. PubMed ID: 36580765 [Abstract] [Full Text] [Related]
7. Analyzing relationships between latent topics in autonomous vehicle crash narratives and crash severity using natural language processing techniques and explainable XGBoost. Li P, Chen S, Yue L, Xu Y, Noyce DA. Accid Anal Prev; 2024 Aug; 203():107605. PubMed ID: 38743983 [Abstract] [Full Text] [Related]
10. A comparative study of machine learning classifiers for injury severity prediction of crashes involving three-wheeled motorized rickshaw. Ijaz M, Lan L, Zahid M, Jamal A. Accid Anal Prev; 2021 May; 154():106094. PubMed ID: 33756425 [Abstract] [Full Text] [Related]
14. Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches. Wang S, Li Z. PLoS One; 2019 May; 14(3):e0214550. PubMed ID: 30921396 [Abstract] [Full Text] [Related]
16. Vulnerable Road Users and Connected Autonomous Vehicles Interaction: A Survey. Reyes-Muñoz A, Guerrero-Ibáñez J. Sensors (Basel); 2022 Jun 18; 22(12):. PubMed ID: 35746397 [Abstract] [Full Text] [Related]
17. A Bayesian extreme value theory modelling framework to assess corridor-wide pedestrian safety using autonomous vehicle sensor data. Singh S, Ali Y, Haque MM. Accid Anal Prev; 2024 Feb 18; 195():107416. PubMed ID: 38056025 [Abstract] [Full Text] [Related]