These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 34776527
21. I-Xe systematics of the impact plume produced chondrules from the CB carbonaceous chondrites: Implications for the half-life value of 129I and absolute age normalization of 129I-129Xe chronometer. Pravdivtseva O, Meshik A, Hohenberg CM, Krot AN. Geochim Cosmochim Acta; 2017 Mar 15; 201():320-330. PubMed ID: 29151614 [Abstract] [Full Text] [Related]
22. Chondrules reveal large-scale outward transport of inner Solar System materials in the protoplanetary disk. Williams CD, Sanborn ME, Defouilloy C, Yin QZ, Kita NT, Ebel DS, Yamakawa A, Yamashita K. Proc Natl Acad Sci U S A; 2020 Sep 22; 117(38):23426-23435. PubMed ID: 32900966 [Abstract] [Full Text] [Related]
23. Impact jetting as the origin of chondrules. Johnson BC, Minton DA, Melosh HJ, Zuber MT. Nature; 2015 Jan 15; 517(7534):339-41. PubMed ID: 25592538 [Abstract] [Full Text] [Related]
24. LOW-TEMPERATURE AQUEOUS ALTERATION ON THE CR CHONDRITE PARENT BODY: IMPLICATIONS FROM IN SITU OXYGEN-ISOTOPE ANALYSES. Jilly-Rehak CE, Huss GR, Nagashima K, Schrader DL. Geochim Cosmochim Acta; 2018 Feb 01; 222():230-252. PubMed ID: 29713092 [Abstract] [Full Text] [Related]
25. A unifying model for the accretion of chondrules and matrix. van Kooten EMME, Moynier F, Agranier A. Proc Natl Acad Sci U S A; 2019 Sep 17; 116(38):18860-18866. PubMed ID: 31484773 [Abstract] [Full Text] [Related]
26. Short time interval for condensation of high-temperature silicates in the solar accretion disk. Luu TH, Young ED, Gounelle M, Chaussidon M. Proc Natl Acad Sci U S A; 2015 Feb 03; 112(5):1298-303. PubMed ID: 25605942 [Abstract] [Full Text] [Related]
27. The relationship between CM and CO chondrites: Insights from combined analyses of titanium, chromium, and oxygen isotopes in CM, CO, and ungrouped chondrites. Torrano ZA, Schrader DL, Davidson J, Greenwood RC, Dunlap DR, Wadhwa M. Geochim Cosmochim Acta; 2021 May 15; 301():70-90. PubMed ID: 34316079 [Abstract] [Full Text] [Related]
28. The Miller Range 090340 and 090206 Meteorites: Identification of New Brachinite-Like Achondrites with Implications for the Diversity and Petrogenesis of the Brachinite Clan. Goodrich CA, Kita NT, Sutton SR, Wirick S, Gross J. Meteorit Planet Sci; 2017 May 15; 52(5):949-978. PubMed ID: 30498327 [Abstract] [Full Text] [Related]
29. Tungsten isotopic constraints on the age and origin of chondrules. Budde G, Kleine T, Kruijer TS, Burkhardt C, Metzler K. Proc Natl Acad Sci U S A; 2016 Mar 15; 113(11):2886-91. PubMed ID: 26929340 [Abstract] [Full Text] [Related]
30. The formation of chondrules at high gas pressures in the solar nebula. Galy A, Young ED, Ash RD, O'Nions RK. Science; 2000 Dec 01; 290(5497):1751-3. PubMed ID: 11099410 [Abstract] [Full Text] [Related]
31. The role of Bells in the continuous accretion between the CM and CR chondrite reservoirs. van Kooten E, Cavalcante L, Wielandt D, Bizzarro M. Meteorit Planet Sci; 2020 Mar 01; 55(3):575-590. PubMed ID: 32362738 [Abstract] [Full Text] [Related]
32. Oxygen isotopic heterogeneity in the early Solar System inherited from the protosolar molecular cloud. Krot AN, Nagashima K, Lyons JR, Lee JE, Bizzarro M. Sci Adv; 2020 Oct 01; 6(42):. PubMed ID: 33067241 [Abstract] [Full Text] [Related]
33. Noble-gas-rich chondrules in an enstatite meteorite. Okazaki R, Takaoka N, Nagao K, Sekiya M, Nakamura T. Nature; 2001 Aug 23; 412(6849):795-8. PubMed ID: 11518959 [Abstract] [Full Text] [Related]
34. The formation of chondrules: petrologic tests of the shock wave model. Connolly Jr HC, Love SG. Science; 1998 Apr 03; 280(5360):62-7. PubMed ID: 9525858 [Abstract] [Full Text] [Related]
35. Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition. Tartèse R, Chaussidon M, Gurenko A, Delarue F, Robert F. Proc Natl Acad Sci U S A; 2018 Aug 21; 115(34):8535-8540. PubMed ID: 30082400 [Abstract] [Full Text] [Related]
36. The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re-Os, O and Ti isotope systematics. Hibiya Y, Archer GJ, Tanaka R, Sanborn ME, Sato Y, Iizuka T, Ozawa K, Walker RJ, Yamaguchi A, Yin QZ, Nakamura T, Irving AJ. Geochim Cosmochim Acta; 2019 Jan 15; 245():597-627. PubMed ID: 30983599 [Abstract] [Full Text] [Related]
37. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Bizzarro M, Baker JA, Haack H. Nature; 2004 Sep 16; 431(7006):275-8. PubMed ID: 15372023 [Abstract] [Full Text] [Related]
38. Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Zanda B, Bourot-Denise M, Perron C, Hewins RH. Science; 1994 Sep 23; 265(5180):1846-9. PubMed ID: 17797224 [Abstract] [Full Text] [Related]
39. Volatile fractionation in the early solar system and chondrule/matrix complementarity. Bland PA, Alard O, Benedix GK, Kearsley AT, Menzies ON, Watt LE, Rogers NW. Proc Natl Acad Sci U S A; 2005 Sep 27; 102(39):13755-60. PubMed ID: 16174733 [Abstract] [Full Text] [Related]
40. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Johansen A, Low MM, Lacerda P, Bizzarro M. Sci Adv; 2015 Apr 27; 1(3):e1500109. PubMed ID: 26601169 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]