These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 34781508

  • 1. Efficiency gain and bidirectional operation of quantum engines with decoupled internal levels.
    de Oliveira TR, Jonathan D.
    Phys Rev E; 2021 Oct; 104(4-1):044133. PubMed ID: 34781508
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A, Tanimura Y.
    J Chem Phys; 2016 Dec 14; 145(22):224105. PubMed ID: 27984915
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Quantum Otto heat engine with Pöschl-Teller potential in contact with coherent thermal bath.
    Abasabadi SH, Mirafzali SY, Baghshahi HR.
    Sci Rep; 2023 Jun 29; 13(1):10522. PubMed ID: 37386051
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY, Rahman AU, Yurischev MA, Haddadi S.
    Phys Rev E; 2023 Sep 29; 108(3-1):034106. PubMed ID: 37849157
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R, Levy A.
    Annu Rev Phys Chem; 2014 Sep 29; 65():365-93. PubMed ID: 24689798
    [Abstract] [Full Text] [Related]

  • 12. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F, Müstecaplıoğlu ÖE.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug 29; 92(2):022142. PubMed ID: 26382378
    [Abstract] [Full Text] [Related]

  • 13. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics.
    Johal RS, Mehta V.
    Entropy (Basel); 2021 Sep 01; 23(9):. PubMed ID: 34573774
    [Abstract] [Full Text] [Related]

  • 14. Measurement-induced operation of two-ion quantum heat machines.
    Chand S, Biswas A.
    Phys Rev E; 2017 Mar 01; 95(3-1):032111. PubMed ID: 28415299
    [Abstract] [Full Text] [Related]

  • 15. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE, Xu D, Cao J.
    Phys Rev E; 2018 Apr 01; 97(4-1):042120. PubMed ID: 29758726
    [Abstract] [Full Text] [Related]

  • 16. A quantum heat engine driven by atomic collisions.
    Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A.
    Nat Commun; 2021 Apr 06; 12(1):2063. PubMed ID: 33824327
    [Abstract] [Full Text] [Related]

  • 17. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM, Lee S, Chun HM, Noh JD.
    Phys Rev E; 2019 Jul 06; 100(1-1):012148. PubMed ID: 31499873
    [Abstract] [Full Text] [Related]

  • 18. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY, Chen B, Liu J.
    Phys Rev E; 2018 Feb 06; 97(2-1):022130. PubMed ID: 29548214
    [Abstract] [Full Text] [Related]

  • 19. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO, Chapin KR, Dorfman KE, Kim MB, Svidzinsky A.
    Proc Natl Acad Sci U S A; 2011 Sep 13; 108(37):15097-100. PubMed ID: 21876187
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.