These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 34797144

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Bounds on fluctuations for machines with broken time-reversal symmetry: A linear response study.
    Saryal S, Mohanta S, Agarwalla BK.
    Phys Rev E; 2022 Feb; 105(2-1):024129. PubMed ID: 35291179
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S, Saha M, Venkatesh BP, Agarwalla BK.
    Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine.
    Kheradsoud S, Dashti N, Misiorny M, Potts PP, Splettstoesser J, Samuelsson P.
    Entropy (Basel); 2019 Aug 08; 21(8):. PubMed ID: 33267490
    [Abstract] [Full Text] [Related]

  • 7. Geometric bounds on the power of adiabatic thermal machines.
    Eglinton J, Brandner K.
    Phys Rev E; 2022 May 08; 105(5):L052102. PubMed ID: 35706185
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S, Agarwalla BK.
    Phys Rev E; 2021 Jun 08; 103(6):L060103. PubMed ID: 34271746
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D, Kurizki G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug 08; 90(2):022102. PubMed ID: 25215684
    [Abstract] [Full Text] [Related]

  • 12. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R, Levy A.
    Annu Rev Phys Chem; 2014 Aug 08; 65():365-93. PubMed ID: 24689798
    [Abstract] [Full Text] [Related]

  • 13. Precision bound and optimal control in periodically modulated continuous quantum thermal machines.
    Das A, Mahunta S, Agarwalla BK, Mukherjee V.
    Phys Rev E; 2023 Jul 08; 108(1-1):014137. PubMed ID: 37583225
    [Abstract] [Full Text] [Related]

  • 14. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE, Xu D, Cao J.
    Phys Rev E; 2018 Apr 08; 97(4-1):042120. PubMed ID: 29758726
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The power of a critical heat engine.
    Campisi M, Fazio R.
    Nat Commun; 2016 Jun 20; 7():11895. PubMed ID: 27320127
    [Abstract] [Full Text] [Related]

  • 19. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry.
    Zhang R, Li QW, Tang FR, Yang XQ, Bai L.
    Phys Rev E; 2017 Aug 20; 96(2-1):022133. PubMed ID: 28950616
    [Abstract] [Full Text] [Related]

  • 20. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
    Yamamoto K, Hatano N.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct 20; 92(4):042165. PubMed ID: 26565226
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.