These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 34797144

  • 21. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines.
    Miller HJD, Mohammady MH, Perarnau-Llobet M, Guarnieri G.
    Phys Rev Lett; 2021 May 28; 126(21):210603. PubMed ID: 34114847
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H, Guo H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 28; 85(1 Pt 1):011146. PubMed ID: 22400551
    [Abstract] [Full Text] [Related]

  • 26. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators.
    Liu J, Segal D.
    Phys Rev E; 2021 Mar 28; 103(3-1):032138. PubMed ID: 33862758
    [Abstract] [Full Text] [Related]

  • 27. Endoreversible quantum heat engines in the linear response regime.
    Wang H, He J, Wang J.
    Phys Rev E; 2017 Jul 28; 96(1-1):012152. PubMed ID: 29347192
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C, Hernández AC, Roco JM.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 28; 85(1 Pt 1):010104. PubMed ID: 22400500
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. A quantum heat engine driven by atomic collisions.
    Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A.
    Nat Commun; 2021 Apr 06; 12(1):2063. PubMed ID: 33824327
    [Abstract] [Full Text] [Related]

  • 32. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response.
    Brandner K, Bauer M, Seifert U.
    Phys Rev Lett; 2017 Oct 27; 119(17):170602. PubMed ID: 29219425
    [Abstract] [Full Text] [Related]

  • 33. Optimal linear cyclic quantum heat engines cannot benefit from strong coupling.
    Liu J, Jung KA.
    Phys Rev E; 2022 Aug 27; 106(2):L022105. PubMed ID: 36109930
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V, Ryabov A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov 27; 92(5):052125. PubMed ID: 26651665
    [Abstract] [Full Text] [Related]

  • 36. Universal Scaling Bounds on a Quantum Heat Current.
    Kamimura S, Yoshida K, Tokura Y, Matsuzaki Y.
    Phys Rev Lett; 2023 Sep 01; 131(9):090401. PubMed ID: 37721850
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y, Tu ZC.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 01; 85(1 Pt 1):011127. PubMed ID: 22400532
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.