These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 34802200

  • 1. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics.
    Wu R, Ma L, Liu XY.
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103981. PubMed ID: 34802200
    [Abstract] [Full Text] [Related]

  • 2. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials.
    Shi C, Hu F, Wu R, Xu Z, Shao G, Yu R, Liu XY.
    Adv Mater; 2021 Dec; 33(50):e2005910. PubMed ID: 33852764
    [Abstract] [Full Text] [Related]

  • 3. Flexible Meso Electronics and Photonics Based on Cocoon Silk and Applications.
    Lu C, Wang X, Liu XY.
    ACS Biomater Sci Eng; 2024 May 13; 10(5):2784-2804. PubMed ID: 38597279
    [Abstract] [Full Text] [Related]

  • 4. Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications.
    Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL.
    ACS Nano; 2018 Jul 24; 12(7):6968-6977. PubMed ID: 29932636
    [Abstract] [Full Text] [Related]

  • 5. Microfluidic Dry-spinning and Characterization of Regenerated Silk Fibroin Fibers.
    Peng Q, Shao H, Hu X, Zhang Y.
    J Vis Exp; 2017 Sep 04; (127):. PubMed ID: 28892028
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.
    Ha SW, Tonelli AE, Hudson SM.
    Biomacromolecules; 2005 Sep 04; 6(3):1722-31. PubMed ID: 15877399
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Self-Assembly of Bombyx mori Silk Fibroin.
    Kong N.
    Methods Mol Biol; 2021 Sep 04; 2347():69-82. PubMed ID: 34472056
    [Abstract] [Full Text] [Related]

  • 17. The Fractal Network Structure of Silk Fibroin Molecules and Its Effect on Spinning of Silkworm Silk.
    Yang S, Zhao C, Yang Y, Ren J, Ling S.
    ACS Nano; 2023 Apr 25; 17(8):7662-7673. PubMed ID: 37042465
    [Abstract] [Full Text] [Related]

  • 18. [Formation of natural silk and progress in artificial spinning].
    Bai X, Yuan W.
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep 25; 36(9):1767-1778. PubMed ID: 33164455
    [Abstract] [Full Text] [Related]

  • 19. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters.
    Yan J, Zhou G, Knight DP, Shao Z, Chen X.
    Biomacromolecules; 2010 Jan 11; 11(1):1-5. PubMed ID: 19860400
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.