These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 34803646

  • 21. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking.
    Lenzi T, Carrozza MC, Agrawal SK.
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):938-48. PubMed ID: 23529105
    [Abstract] [Full Text] [Related]

  • 22. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D, Song R, Gao J.
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.
    Young AJ, Gannon H, Ferris DP.
    Front Bioeng Biotechnol; 2017 Aug; 5():37. PubMed ID: 28713810
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
    Kao PC, Lewis CL, Ferris DP.
    J Biomech; 2010 Jan 19; 43(2):203-9. PubMed ID: 19878952
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S, Malcolm P, Collins SH, De Clercq D.
    J Neuroeng Rehabil; 2017 Apr 27; 14(1):35. PubMed ID: 28449684
    [Abstract] [Full Text] [Related]

  • 29. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW, Sawicki GS.
    J Neuroeng Rehabil; 2020 Jun 15; 17(1):75. PubMed ID: 32539840
    [Abstract] [Full Text] [Related]

  • 30. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.
    Hwang B, Jeon D.
    Sensors (Basel); 2015 Apr 09; 15(4):8337-57. PubMed ID: 25860074
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK, Banala SK, Agrawal SK.
    J Neuroeng Rehabil; 2009 Jul 03; 6():24. PubMed ID: 19575808
    [Abstract] [Full Text] [Related]

  • 34. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ, Lewek MD, Sawicki GS.
    J Neuroeng Rehabil; 2015 Feb 25; 12():23. PubMed ID: 25889283
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.
    Tortora S, Tonin L, Sieghartsleitner S, Ortner R, Guger C, Lennon O, Coyle D, Menegatti E, Felice AD.
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb 25; 31():2988-3003. PubMed ID: 37432820
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.