These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B. Plant Cell; 1999 Mar; 11(3):365-76. PubMed ID: 10072397 [Abstract] [Full Text] [Related]
23. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species. Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A. Front Plant Sci; 2023 Mar; 14():1217421. PubMed ID: 37534287 [Abstract] [Full Text] [Related]
24. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. LeClere S, Tellez R, Rampey RA, Matsuda SP, Bartel B. J Biol Chem; 2002 Jun 07; 277(23):20446-52. PubMed ID: 11923288 [Abstract] [Full Text] [Related]
25. DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T, Retzer K, Harant K, Novák O, Hoyerová K, Petrášek J. Plant Physiol; 2021 Sep 04; 187(1):103-115. PubMed ID: 34618129 [Abstract] [Full Text] [Related]
26. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. González-Lamothe R, El Oirdi M, Brisson N, Bouarab K. Plant Cell; 2012 Feb 04; 24(2):762-77. PubMed ID: 22374398 [Abstract] [Full Text] [Related]
27. Auxin: regulation, action, and interaction. Woodward AW, Bartel B. Ann Bot; 2005 Apr 04; 95(5):707-35. PubMed ID: 15749753 [Abstract] [Full Text] [Related]
28. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, Kinoshita-Tsujimura K, Yu H, Dai X, Takebayashi Y, Takeda-Kamiya N, Kakimoto T, Kawaide H, Natsume M, Estelle M, Zhao Y, Hayashi K, Kamiya Y, Kasahara H. Plant Cell Physiol; 2015 Aug 04; 56(8):1641-54. PubMed ID: 26076971 [Abstract] [Full Text] [Related]
29. Current aspects of auxin biosynthesis in plants. Kasahara H. Biosci Biotechnol Biochem; 2016 Aug 04; 80(1):34-42. PubMed ID: 26364770 [Abstract] [Full Text] [Related]
36. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis. Chen X, Zhang M, Wang M, Tan G, Zhang M, Hou YX, Wang B, Li Z. BMC Plant Biol; 2018 Dec 18; 18(1):361. PubMed ID: 30563457 [Abstract] [Full Text] [Related]
37. Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis. Guo R, Hu Y, Aoi Y, Hira H, Ge C, Dai X, Kasahara H, Zhao Y. Biochem Biophys Res Commun; 2022 Jan 22; 589():16-22. PubMed ID: 34883285 [Abstract] [Full Text] [Related]
38. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R. New Phytol; 2009 Jan 22; 181(2):323-338. PubMed ID: 19032442 [Abstract] [Full Text] [Related]
39. Metabolism of indole-3-acetic acid in Arabidopsis. Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G. Plant Physiol; 1998 Sep 22; 118(1):285-96. PubMed ID: 9733548 [Abstract] [Full Text] [Related]
40. Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. Sherp AM, Westfall CS, Alvarez S, Jez JM. J Biol Chem; 2018 Mar 23; 293(12):4277-4288. PubMed ID: 29462792 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]