These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 34833779

  • 21. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units.
    Mundt M, Johnson WR, Potthast W, Markert B, Mian A, Alderson J.
    Sensors (Basel); 2021 Jul 01; 21(13):. PubMed ID: 34283080
    [Abstract] [Full Text] [Related]

  • 22. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.
    Logar G, Munih M.
    Sensors (Basel); 2015 May 13; 15(5):11258-76. PubMed ID: 25985167
    [Abstract] [Full Text] [Related]

  • 23. Sex-based differences in landing mechanics vary between the drop vertical jump and stop jump.
    Peebles AT, Dickerson LC, Renner KE, Queen RM.
    J Biomech; 2020 May 22; 105():109818. PubMed ID: 32423549
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Optimum Drop Jump Height in Division III Athletes: Under 75% of Vertical Jump Height.
    Peng HT, Khuat CT, Kernozek TW, Wallace BJ, Lo SL, Song CY.
    Int J Sports Med; 2017 Oct 22; 38(11):842-846. PubMed ID: 28895621
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. A comparison of machine learning models' accuracy in predicting lower-limb joints' kinematics, kinetics, and muscle forces from wearable sensors.
    Moghadam SM, Yeung T, Choisne J.
    Sci Rep; 2023 Mar 28; 13(1):5046. PubMed ID: 36977706
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks.
    Yang C, Yao W, Garrett WE, Givens DL, Hacke J, Liu H, Yu B.
    Am J Sports Med; 2018 Oct 28; 46(12):3014-3022. PubMed ID: 30148646
    [Abstract] [Full Text] [Related]

  • 31. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R, Hooper T, James CR, Sizer PS.
    J Athl Train; 2016 Dec 28; 51(12):1003-1012. PubMed ID: 27874298
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention.
    Herman DC, Barth JT.
    Am J Sports Med; 2016 Sep 28; 44(9):2347-53. PubMed ID: 27474381
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Indirect Estimation of Vertical Ground Reaction Force from a Body-Mounted INS/GPS Using Machine Learning.
    Sharma D, Davidson P, Müller P, Piché R.
    Sensors (Basel); 2021 Feb 23; 21(4):. PubMed ID: 33672353
    [Abstract] [Full Text] [Related]

  • 36. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.
    Faber GS, Chang CC, Kingma I, Dennerlein JT, van Dieën JH.
    J Biomech; 2016 Apr 11; 49(6):904-912. PubMed ID: 26795123
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.