These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 34836989

  • 1. A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer.
    Chen W, Wang C, Zhan W, Jia Y, Ruan F, Qiu L, Yang S, Li Y.
    Sci Rep; 2021 Nov 26; 11(1):23002. PubMed ID: 34836989
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Localized fine-tuning and clinical evaluation of deep-learning based auto-segmentation (DLAS) model for clinical target volume (CTV) and organs-at-risk (OAR) in rectal cancer radiotherapy.
    Geng J, Sui X, Du R, Feng J, Wang R, Wang M, Yao K, Chen Q, Bai L, Wang S, Li Y, Wu H, Hu X, Du Y.
    Radiat Oncol; 2024 Jul 02; 19(1):87. PubMed ID: 38956690
    [Abstract] [Full Text] [Related]

  • 5. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K, Dai J, Li Y.
    Med Phys; 2017 Dec 02; 44(12):6377-6389. PubMed ID: 28963779
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Automatic end-to-end VMAT treatment planning for rectal cancers.
    Huang K, Chung C, Ludmir EB, Zhang L, Owens CA, Vega JG, Duryea J, Zhao Y, Chen X, Fuentes D, Cardenas CE, Briere TM, Beddar S, Court LE, Das P.
    J Appl Clin Med Phys; 2024 Apr 02; 25(4):e14259. PubMed ID: 38317597
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy.
    Savenije MHF, Maspero M, Sikkes GG, van der Voort van Zyp JRN, T J Kotte AN, Bol GH, T van den Berg CA.
    Radiat Oncol; 2020 May 11; 15(1):104. PubMed ID: 32393280
    [Abstract] [Full Text] [Related]

  • 13. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV, Van den Bosch L, Aljabar P, Peressutti D, Both S, J H M Steenbakkers R, Langendijk JA, Gooding MJ, Brouwer CL.
    Radiother Oncol; 2020 Jan 11; 142():115-123. PubMed ID: 31653573
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Geometric evaluations of CT and MRI based deep learning segmentation for brain OARs in radiotherapy.
    Alzahrani N, Henry A, Clark A, Murray L, Nix M, Al-Qaisieh B.
    Phys Med Biol; 2023 Aug 29; 68(17):. PubMed ID: 37579753
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Comparison of CT images with average intensity projection, free breathing, and mid-ventilation for dose calculation in lung cancer.
    Khamfongkhruea C, Thongsawad S, Tannanonta C, Chamchod S.
    J Appl Clin Med Phys; 2017 Mar 29; 18(2):26-36. PubMed ID: 28300381
    [Abstract] [Full Text] [Related]

  • 18. Impact of CT reconstruction algorithm on auto-segmentation performance.
    Miller C, Mittelstaedt D, Black N, Klahr P, Nejad-Davarani S, Schulz H, Goshen L, Han X, Ghanem AI, Morris ED, Glide-Hurst C.
    J Appl Clin Med Phys; 2019 Sep 29; 20(9):95-103. PubMed ID: 31538718
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.