These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Plant synthetic epigenomic engineering for crop improvement. Yang L, Zhang P, Wang Y, Hu G, Guo W, Gu X, Pu L. Sci China Life Sci; 2022 Nov 15; 65(11):2191-2204. PubMed ID: 35851940 [Abstract] [Full Text] [Related]
6. Harnessing epigenetic variability for crop improvement: current status and future prospects. Kim EY, Kim KD, Cho J. Genes Genomics; 2022 Mar 15; 44(3):259-266. PubMed ID: 34807374 [Abstract] [Full Text] [Related]
14. Emerging Genome Engineering Tools in Crop Research and Breeding. Bilichak A, Gaudet D, Laurie J. Methods Mol Biol; 2020 May 15; 2072():165-181. PubMed ID: 31541446 [Abstract] [Full Text] [Related]
15. Epigenome and Epitranscriptome: Potential Resources for Crop Improvement. Hou Q, Wan X. Int J Mol Sci; 2021 Nov 29; 22(23):. PubMed ID: 34884725 [Abstract] [Full Text] [Related]
16. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes. Mirouze M, Vitte C. J Exp Bot; 2014 Jun 29; 65(10):2801-12. PubMed ID: 24744427 [Abstract] [Full Text] [Related]
17. Mapping human epigenomes. Rivera CM, Ren B. Cell; 2013 Sep 26; 155(1):39-55. PubMed ID: 24074860 [Abstract] [Full Text] [Related]
18. Perspectives for epigenetic editing in crops. Selma S, Orzáez D. Transgenic Res; 2021 Aug 26; 30(4):381-400. PubMed ID: 33891288 [Abstract] [Full Text] [Related]
19. Plant stress biology in epigenomic era. Perrone A, Martinelli F. Plant Sci; 2020 May 26; 294():110376. PubMed ID: 32234231 [Abstract] [Full Text] [Related]
20. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Shema E, Bernstein BE, Buenrostro JD. Nat Genet; 2019 Jan 26; 51(1):19-25. PubMed ID: 30559489 [Abstract] [Full Text] [Related] Page: [Next] [New Search]