These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 34856930

  • 1. Integrated transcriptome and small RNA sequencing analyses reveal a drought stress response network in Sophora tonkinensis.
    Liang Y, Wei K, Wei F, Qin S, Deng C, Lin Y, Li M, Gu L, Wei G, Miao J, Zhang Z.
    BMC Plant Biol; 2021 Dec 02; 21(1):566. PubMed ID: 34856930
    [Abstract] [Full Text] [Related]

  • 2. De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides.
    Yan F, Zhu Y, Zhao Y, Wang Y, Li J, Wang Q, Liu Y.
    BMC Genomics; 2020 Jun 23; 21(1):423. PubMed ID: 32576152
    [Abstract] [Full Text] [Related]

  • 3. High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba).
    Li R, Chen D, Wang T, Wan Y, Li R, Fang R, Wang Y, Hu F, Zhou H, Li L, Zhao W.
    PLoS One; 2017 Jun 23; 12(2):e0172883. PubMed ID: 28235056
    [Abstract] [Full Text] [Related]

  • 4. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.
    Chen Q, Li M, Zhang Z, Tie W, Chen X, Jin L, Zhai N, Zheng Q, Zhang J, Wang R, Xu G, Zhang H, Liu P, Zhou H.
    BMC Genomics; 2017 Jan 10; 18(1):62. PubMed ID: 28068898
    [Abstract] [Full Text] [Related]

  • 5. Integrated miRNA and mRNA Transcriptome Analysis Reveals Regulatory Mechanisms in the Response of Winter Brassica rapa to Drought Stress.
    Ma L, Xu Y, Tao X, Fahim AM, Zhang X, Han C, Yang G, Wang W, Pu Y, Liu L, Fan T, Wu J, Sun W.
    Int J Mol Sci; 2024 Sep 20; 25(18):. PubMed ID: 39337583
    [Abstract] [Full Text] [Related]

  • 6. Sophora tonkinensis: response and adaptation of physiological characteristics, functional traits, and secondary metabolites to drought stress.
    Liang Y, Wei F, Qin S, Li M, Hu Y, Lin Y, Wei G, Wei K, Miao J, Zhang Z.
    Plant Biol (Stuttg); 2023 Dec 20; 25(7):1109-1120. PubMed ID: 37815250
    [Abstract] [Full Text] [Related]

  • 7. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).
    Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L, Menossi M.
    PLoS One; 2012 Dec 20; 7(10):e46703. PubMed ID: 23071617
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana.
    Li H, Yao W, Fu Y, Li S, Guo Q.
    PLoS One; 2015 Dec 20; 10(1):e111054. PubMed ID: 25559297
    [Abstract] [Full Text] [Related]

  • 10. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G, Zenda T, Liu S, Wang X, Jin H, Dong A, Yang Y, Duan H.
    Genes Genomics; 2020 Aug 20; 42(8):937-955. PubMed ID: 32623576
    [Abstract] [Full Text] [Related]

  • 11. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F, Stewart CN, Taki FA, He Q, Liu H, Zhang B.
    Plant Biotechnol J; 2014 Apr 20; 12(3):354-66. PubMed ID: 24283289
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat.
    Liu H, Able AJ, Able JA.
    Int J Mol Sci; 2020 Aug 21; 21(17):. PubMed ID: 32825615
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Genome-wide identification and analysis of drought-responsive genes and microRNAs in tobacco.
    Yin F, Qin C, Gao J, Liu M, Luo X, Zhang W, Liu H, Liao X, Shen Y, Mao L, Zhang Z, Lin H, Lübberstedt T, Pan G.
    Int J Mol Sci; 2015 Mar 12; 16(3):5714-40. PubMed ID: 25775154
    [Abstract] [Full Text] [Related]

  • 16. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.
    Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X.
    BMC Genet; 2016 Apr 12; 17():57. PubMed ID: 27068810
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Comparative miRNome and transcriptome analyses reveal the expression of novel miRNAs in the panicle of rice implicated in sustained agronomic performance under terminal drought stress.
    Kaur S, Seem K, Duhan N, Kumar S, Kaundal R, Mohapatra T.
    Planta; 2024 Apr 19; 259(6):128. PubMed ID: 38639776
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.