These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 34874145
1. Coal-Derived Graphene/MoS2 Heterostructure Electrodes for Li-Ion Batteries: Experiment and Simulation Study. Pushparaj RI, Cakir D, Zhang X, Xu S, Mann M, Hou X. ACS Appl Mater Interfaces; 2021 Dec 22; 13(50):59950-59961. PubMed ID: 34874145 [Abstract] [Full Text] [Related]
2. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study. Wu P, Li P, Huang M. Nanomaterials (Basel); 2019 Oct 10; 9(10):. PubMed ID: 31658597 [Abstract] [Full Text] [Related]
3. Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries. Zhao C, Wang X, Kong J, Ang JM, Lee PS, Liu Z, Lu X. ACS Appl Mater Interfaces; 2016 Jan 27; 8(3):2372-9. PubMed ID: 26745784 [Abstract] [Full Text] [Related]
4. Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries. Zhang Z, Zhao J, Xu M, Wang H, Gong Y, Xu J. Nanotechnology; 2018 Aug 17; 29(33):335401. PubMed ID: 29775439 [Abstract] [Full Text] [Related]
5. Facile Synthesis of a MoS2 and Functionalized Graphene Heterostructure for Enhanced Lithium-Storage Performance. Wang B, Zhang Y, Zhang J, Xia R, Chu Y, Zhou J, Yang X, Huang J. ACS Appl Mater Interfaces; 2017 Apr 19; 9(15):12907-12913. PubMed ID: 28375001 [Abstract] [Full Text] [Related]
6. Nature-Inspired, Graphene-Wrapped 3D MoS2 Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries. Anwer S, Huang Y, Li B, Govindan B, Liao K, J Cantwell W, Wu F, Chen R, Zheng L. ACS Appl Mater Interfaces; 2019 Jun 26; 11(25):22323-22331. PubMed ID: 31149805 [Abstract] [Full Text] [Related]
7. Metallic VS2/graphene heterostructure as an ultra-high rate and high-specific capacity anode material for Li/Na-ion batteries. Liu B, Gao T, Liao P, Wen Y, Yao M, Shi S, Zhang W. Phys Chem Chem Phys; 2021 Sep 14; 23(34):18784-18793. PubMed ID: 34612417 [Abstract] [Full Text] [Related]
8. A Pseudolayered MoS2 as Li-Ion Intercalation Host with Enhanced Rate Capability and Durability. Gong S, Zhao G, Lyu P, Sun K. Small; 2018 Nov 14; 14(48):e1803344. PubMed ID: 30345625 [Abstract] [Full Text] [Related]
9. Hierarchical Porous MoS2/C Nanospheres Self-Assembled by Nanosheets with High Electrochemical Energy Storage Performance. Liu H, Lin Y, Zhang L. Nanoscale Res Lett; 2020 Oct 15; 15(1):199. PubMed ID: 33057864 [Abstract] [Full Text] [Related]
10. MoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries. Faizan M, Hussain S, Islam M, Kim JY, Han D, Bae JH, Vikraman D, Ali B, Abbas S, Kim HS, Singh AN, Jung J, Nam KW. Nanomaterials (Basel); 2022 Jun 10; 12(12):. PubMed ID: 35745349 [Abstract] [Full Text] [Related]
11. Conversion of MoS2 to a Ternary MoS2- xSe x Alloy for High-Performance Sodium-Ion Batteries. Zhang Y, Tao H, Du S, Yang X. ACS Appl Mater Interfaces; 2019 Mar 27; 11(12):11327-11337. PubMed ID: 30839188 [Abstract] [Full Text] [Related]
12. Boron Doped Graphene Quantum Structure and MoS2 Nanohybrid as Anode Materials for Highly Reversible Lithium Storage. Riyanto, Sahroni I, Bindumadhavan K, Chang PY, Doong RA. Front Chem; 2019 Mar 27; 7():116. PubMed ID: 30931296 [Abstract] [Full Text] [Related]
13. Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance. Zhao X, Hu C, Cao M. Chem Asian J; 2013 Nov 27; 8(11):2701-7. PubMed ID: 23946108 [Abstract] [Full Text] [Related]
14. A 3D Multilevel Heterostructure Containing 2D Vertically Aligned MoS2 Nanosheets and 1D Sandwich C-MoS2-C Nanotubes to Enhance the Storage of Li+ Ions. Zhao Y, Luo W, Luo H, Liu X, Zheng W. Nanomaterials (Basel); 2023 Jul 18; 13(14):. PubMed ID: 37513102 [Abstract] [Full Text] [Related]
15. Cation-Driven Assembly of Bilayered Vanadium Oxide and Graphene Oxide Nanoflakes to Form Two-Dimensional Heterostructure Electrodes for Li-Ion Batteries. Andris R, Averianov T, Zachman MJ, Pomerantseva E. ACS Appl Mater Interfaces; 2023 Jun 07; 15(22):26525-26537. PubMed ID: 37216415 [Abstract] [Full Text] [Related]
16. A V3C2MXene/graphene heterostructure as a sustainable electrode material for metal ion batteries. Dinda PP, Meena S. J Phys Condens Matter; 2021 Apr 21; 33(17):. PubMed ID: 33530068 [Abstract] [Full Text] [Related]
18. Constructing hierarchical MoS2/WS2 heterostructures in dual carbon layer for enhanced sodium ions batteries performance. Zhao B, Suo G, Mu R, Lin C, Li J, Hou X, Ye X, Yang Y, Zhang L. J Colloid Interface Sci; 2024 Aug 15; 668():565-574. PubMed ID: 38691965 [Abstract] [Full Text] [Related]
19. Sandwich-Like Heterostructures of MoS2 /Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as High-Performance Cathodes for Aqueous Zinc-Ion Batteries. Li S, Liu Y, Zhao X, Shen Q, Zhao W, Tan Q, Zhang N, Li P, Jiao L, Qu X. Adv Mater; 2021 Mar 15; 33(12):e2007480. PubMed ID: 33598960 [Abstract] [Full Text] [Related]
20. First-principles identification of interface effect on Li storage capacity of C3N/graphene multilayer heterostructure. Gavali DS, Kawazoe Y, Thapa R. J Colloid Interface Sci; 2022 Mar 15; 610():80-88. PubMed ID: 34922084 [Abstract] [Full Text] [Related] Page: [Next] [New Search]