These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 3488583

  • 1. The quick-freezing of single intact skeletal muscle fibers at known time intervals following electrical stimulation.
    Nassar R, Wallace NR, Taylor I, Sommer JR.
    Scan Electron Microsc; 1986; (Pt 1):309-28. PubMed ID: 3488583
    [Abstract] [Full Text] [Related]

  • 2. A stimulus timing device for capturing fast physiologic events by quick-freezing.
    Nassar R, Sommer JR.
    Scanning Microsc; 1992 Sep; 6(3):745-50; discussion 650-1. PubMed ID: 1439666
    [Abstract] [Full Text] [Related]

  • 3. [The use of cryomethods for research on the sarcomere ultrastructure of rabbit skeletal muscles].
    Shpagina MD, Khutsian SS, Allakhverdov BL, Podlubnaia ZA.
    Tsitologiia; 1990 Sep; 32(11):1073-7. PubMed ID: 2093241
    [Abstract] [Full Text] [Related]

  • 4. Study on structural elements of sarcomere: structure of thick filaments in muscle and after isolation.
    Allakhverdov BL, Shpagina MD, Podlubnaya ZA.
    Acta Histochem Suppl; 1981 Sep; 23():83-7. PubMed ID: 6784182
    [No Abstract] [Full Text] [Related]

  • 5. Cardiac muscle following quick-freezing: preservation of in vivo ultrastructure and geometry with special emphasis on intercellular clefts in the intact frog heart.
    Sommer JR, Johnson EA, Wallace NR, Nassar R.
    J Mol Cell Cardiol; 1988 Apr; 20(4):285-302. PubMed ID: 3262768
    [Abstract] [Full Text] [Related]

  • 6. The contracting muscle: a challenge for freeze-substitution and low temperature embedding.
    Edelmann L.
    Scanning Microsc Suppl; 1989 Apr; 3():241-51; discussion 251-2. PubMed ID: 2616954
    [Abstract] [Full Text] [Related]

  • 7. The structure of the contractile apparatus in ultrarapidly frozen smooth muscle: freeze-fracture, deep-etch, and freeze-substitution studies.
    Hodgkinson JL, Newman TM, Marston SB, Severs NJ.
    J Struct Biol; 1995 Apr; 114(2):93-104. PubMed ID: 7612400
    [Abstract] [Full Text] [Related]

  • 8. Protocol for 3-D visualization of molecules on mica via the quick-freeze, deep-etch technique.
    Heuser J.
    J Electron Microsc Tech; 1989 Nov; 13(3):244-63. PubMed ID: 2585121
    [Abstract] [Full Text] [Related]

  • 9. Electrical stimulation effect on denervated skeletal myofibers in rats: a light and electron microscopic study.
    Pachter BR, Eberstein A, Goodgold J.
    Arch Phys Med Rehabil; 1982 Sep; 63(9):427-30. PubMed ID: 7115042
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Cross-bridge angle distribution and thin filament stiffness in frog skeletal muscle fibers as studied by quick-freeze deep-etch electron microscopy.
    Suzuki S, Oshimi Y, Sugi H.
    Adv Exp Med Biol; 1993 Sep; 332():57-68; discussion 68-70. PubMed ID: 8109369
    [Abstract] [Full Text] [Related]

  • 12. [Morphofunctional characteristics of myotomic muscle fibers in the tail of the Rana temporaria tadpole].
    Lebedinskaia II, Radziukevich TL, Nasledov GA.
    Zh Evol Biokhim Fiziol; 1989 Sep; 25(3):330-6. PubMed ID: 2788969
    [Abstract] [Full Text] [Related]

  • 13. A freeze-substitution method for localizing divalent cations: examples from secretory systems.
    Ornberg RL, Reese TS.
    Fed Proc; 1980 Aug; 39(10):2802-8. PubMed ID: 6967831
    [Abstract] [Full Text] [Related]

  • 14. Freeze-fracture studies on the cross-bridge angle distribution at various states and the thin filament stiffness in single skinned frog muscle fibers.
    Suzuki S, Oshimi Y, Sugi H.
    J Electron Microsc (Tokyo); 1993 Apr; 42(2):107-16. PubMed ID: 8350022
    [Abstract] [Full Text] [Related]

  • 15. [Molecular organization of the sarcoplasm of skeletal muscles in different functional states].
    Lazurkina NN.
    Biull Eksp Biol Med; 1982 Nov; 94(11):43-5. PubMed ID: 6983896
    [Abstract] [Full Text] [Related]

  • 16. Freeze-drying and related preparation techniques for biological microprobe analysis.
    Wróblewski R, Wróblewski J, Anniko M, Edström L.
    Scan Electron Microsc; 1985 Nov; (Pt 1):447-54. PubMed ID: 4001862
    [Abstract] [Full Text] [Related]

  • 17. [Na+-induced Ca2+ release from sarcoplasmic reticulum during excitation of phasic muscle fibers].
    Nesterov VP, Dëmina IN, Maksimov NA.
    Dokl Akad Nauk SSSR; 1982 Nov; 263(5):1267-70. PubMed ID: 6980111
    [No Abstract] [Full Text] [Related]

  • 18. Intracellular site of Sr2+ and Ba2+ accumulation in frog twitch muscle fibres as determined by electron probe X-ray microanalysis.
    Uhrík B, Zacharová D.
    Gen Physiol Biophys; 1988 Dec; 7(6):569-79. PubMed ID: 3266488
    [Abstract] [Full Text] [Related]

  • 19. Quick-freezing--the new frontier in freeze-fracture.
    Shotton D.
    Nature; 1980 Jan 03; 283(5742):12-4. PubMed ID: 7188626
    [No Abstract] [Full Text] [Related]

  • 20. Freeze fracture studies of membrane systems in vertebrate muscle. I. Striated muscle.
    Rayns DG, Devine CE, Sutherland CL.
    J Ultrastruct Res; 1975 Mar 03; 50(3):306-21. PubMed ID: 1094130
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.