These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 34891474

  • 1. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton.
    Shi K, Huang R, Mu F, Peng Z, Yin J, Cheng H.
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1076-1081. PubMed ID: 34891474
    [Abstract] [Full Text] [Related]

  • 2. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram.
    Shi K, Huang R, Peng Z, Mu F, Yang X.
    Front Neurosci; 2021 Nov; 15():704603. PubMed ID: 34867145
    [Abstract] [Full Text] [Related]

  • 3. Multimodal Human-Exoskeleton Interface for Lower Limb Movement Prediction Through a Dense Co-Attention Symmetric Mechanism.
    Shi K, Mu F, Huang R, Huang K, Peng Z, Zou C, Yang X, Cheng H.
    Front Neurosci; 2022 Nov; 16():796290. PubMed ID: 35546887
    [Abstract] [Full Text] [Related]

  • 4. An sEMG-Based Human-Exoskeleton Interface Fusing Convolutional Neural Networks With Hand-Crafted Features.
    Yang X, Fu Z, Li B, Liu J.
    Front Neurorobot; 2022 Nov; 16():938345. PubMed ID: 35845758
    [Abstract] [Full Text] [Related]

  • 5. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z, Wang C, Song C.
    PLoS One; 2020 Nov; 15(8):e0238247. PubMed ID: 32853239
    [Abstract] [Full Text] [Related]

  • 6. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X, Wang KY, Yang ZY.
    Technol Health Care; 2024 Nov; 32(S1):79-93. PubMed ID: 38759039
    [Abstract] [Full Text] [Related]

  • 7. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q, Fei C, Jiao Z, Xie Q, Dai Y, Fan Y, Shen Z, Yu H.
    Technol Health Care; 2022 Nov; 30(5):1167-1182. PubMed ID: 35342067
    [Abstract] [Full Text] [Related]

  • 8. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C, Liang H, Ueda N, Li P, Fujimoto Y, Zhu C.
    Sensors (Basel); 2020 Nov 09; 20(21):. PubMed ID: 33182271
    [Abstract] [Full Text] [Related]

  • 9. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y, Wei W, Lin X, Li J.
    Sensors (Basel); 2024 Feb 26; 24(5):. PubMed ID: 38475041
    [Abstract] [Full Text] [Related]

  • 10. [Construction and analysis of muscle functional network for exoskeleton robot].
    Chen L, Zhang C, Song X, Zhang T, Liu X, Yang Z.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug 25; 36(4):565-572. PubMed ID: 31441256
    [Abstract] [Full Text] [Related]

  • 11. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L, Hu X, Hu J, Fang Y, He R, Yu H.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec 25; 33(6):1168-75. PubMed ID: 29715415
    [Abstract] [Full Text] [Related]

  • 12. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S, Lu J, Huo W, Yu N, Han J.
    Front Neurorobot; 2022 Dec 25; 16():978014. PubMed ID: 36386394
    [Abstract] [Full Text] [Related]

  • 13. [Research status of lower limb exoskeleton rehabilitation robot].
    Li M, Li H, Yu H.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug 25; 41(4):833-839. PubMed ID: 39218611
    [Abstract] [Full Text] [Related]

  • 14. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T, Kim I, Lee SH.
    Sensors (Basel); 2021 Apr 16; 21(8):. PubMed ID: 33923587
    [Abstract] [Full Text] [Related]

  • 15. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H, Li G, Zhao X, Li F.
    Sensors (Basel); 2020 Feb 18; 20(4):. PubMed ID: 32085505
    [Abstract] [Full Text] [Related]

  • 16. Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control.
    Ren H, Liu T, Wang J.
    Sensors (Basel); 2023 Oct 29; 23(21):. PubMed ID: 37960505
    [Abstract] [Full Text] [Related]

  • 17. Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography.
    Tu P, Li J, Wang H.
    Sensors (Basel); 2024 May 13; 24(10):. PubMed ID: 38793951
    [Abstract] [Full Text] [Related]

  • 18. Active Human-Following Control of an Exoskeleton Robot With Body Weight Support.
    Li G, Li Z, Su CY, Xu T.
    IEEE Trans Cybern; 2023 Nov 13; 53(11):7367-7379. PubMed ID: 37030717
    [Abstract] [Full Text] [Related]

  • 19. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y, Liu Z, Feng Z.
    Clin Biomech (Bristol); 2022 May 13; 95():105660. PubMed ID: 35561659
    [Abstract] [Full Text] [Related]

  • 20. Cross-domain prediction approach of human lower limb voluntary movement intention for exoskeleton robot based on EEG signals.
    Dong R, Zhang X, Li H, Lu Z, Li C, Zhu A.
    Front Bioeng Biotechnol; 2024 May 13; 12():1448903. PubMed ID: 39246298
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.