These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 34892048
21. Full-count PET recovery from low-count image using a dilated convolutional neural network. Spuhler K, Serrano-Sosa M, Cattell R, DeLorenzo C, Huang C. Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608 [Abstract] [Full Text] [Related]
23. A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images. Yu S, Dai G, Wang Z, Li L, Wei X, Xie Y. BMC Med Imaging; 2018 May 16; 18(1):17. PubMed ID: 29769079 [Abstract] [Full Text] [Related]
29. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients. Tie X, Lam SK, Zhang Y, Lee KH, Au KH, Cai J. Med Phys; 2020 Apr 16; 47(4):1750-1762. PubMed ID: 32012292 [Abstract] [Full Text] [Related]
34. Super-resolution of brain tumor MRI images based on deep learning. Zhou Z, Ma A, Feng Q, Wang R, Cheng L, Chen X, Yang X, Liao K, Miao Y, Qiu Y. J Appl Clin Med Phys; 2022 Nov 16; 23(11):e13758. PubMed ID: 36107021 [Abstract] [Full Text] [Related]
36. A Lightweight Low-dose PET Image Super-resolution Reconstruction Method based on Convolutional Neural Network. Liu K, Yu H, Zhang M, Zhao L, Wang X, Liu S, Li H, Yang K. Curr Med Imaging; 2023 Nov 16; 19(12):1427-1435. PubMed ID: 36757033 [Abstract] [Full Text] [Related]
37. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans. Fujita S, Hagiwara A, Otsuka Y, Hori M, Takei N, Hwang KP, Irie R, Andica C, Kamagata K, Akashi T, Kunishima Kumamaru K, Suzuki M, Wada A, Abe O, Aoki S. Invest Radiol; 2020 Apr 16; 55(4):249-256. PubMed ID: 31977603 [Abstract] [Full Text] [Related]
38. Mitigating transmit-B1 artifacts by predicting parallel transmission images with deep learning: A feasibility study using high-resolution whole-brain diffusion at 7 Tesla. Ma X, Uğurbil K, Wu X. Magn Reson Med; 2022 Aug 16; 88(2):727-741. PubMed ID: 35403237 [Abstract] [Full Text] [Related]
40. Deep-JASC: joint attenuation and scatter correction in whole-body 18F-FDG PET using a deep residual network. Shiri I, Arabi H, Geramifar P, Hajianfar G, Ghafarian P, Rahmim A, Ay MR, Zaidi H. Eur J Nucl Med Mol Imaging; 2020 Oct 16; 47(11):2533-2548. PubMed ID: 32415552 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]